Model for Individualized Prediction of Breast Cancer Risk After a Benign Breast Biopsy

Author:

Pankratz V. Shane1,Degnim Amy C.1,Frank Ryan D.1,Frost Marlene H.1,Visscher Daniel W.1,Vierkant Robert A.1,Hieken Tina J.1,Ghosh Karthik1,Tarabishy Yaman1,Vachon Celine M.1,Radisky Derek C.1,Hartmann Lynn C.1

Affiliation:

1. V. Shane Pankratz, University of New Mexico Health Sciences Center, Albuquerque, NM; Amy C. Degnim, Ryan D. Frank, Marlene H. Frost, Daniel W. Visscher, Robert A. Vierkant, Tina J. Hieken, Karthik Ghosh, Celine M. Vachon, and Lynn C. Hartmann, Mayo Clinic, Rochester, MN; Yaman Tarabishy, Washington University, St Louis, St Louis, MO; and Derek C. Radisky, Mayo Clinic, Jacksonville, FL.

Abstract

Purpose Optimal early detection and prevention for breast cancer depend on accurate identification of women at increased risk. We present a risk prediction model that incorporates histologic features of biopsy tissues from women with benign breast disease (BBD) and compare its performance to the Breast Cancer Risk Assessment Tool (BCRAT). Methods We estimated the age-specific incidence of breast cancer and death from the Mayo BBD cohort and then combined these estimates with a relative risk model derived from 377 patient cases with breast cancer and 734 matched controls sampled from the Mayo BBD cohort to develop the BBD–to–breast cancer (BBD-BC) risk assessment tool. We validated the model using an independent set of 378 patient cases with breast cancer and 728 matched controls from the Mayo BBD cohort and compared the risk predictions from our model with those from the BCRAT. Results The BBD-BC model predicts the probability of breast cancer in women with BBD using tissue-based and other risk factors. The concordance statistic from the BBD-BC model was 0.665 in the model development series and 0.629 in the validation series; these values were higher than those from the BCRAT (0.567 and 0.472, respectively). The BCRAT significantly underpredicted breast cancer risk after benign biopsy (P = .004), whereas the BBD-BC predictions were appropriately calibrated to observed cancers (P = .247). Conclusion We developed a model using both demographic and histologic features to predict breast cancer risk in women with BBD. Our model more accurately classifies a woman's breast cancer risk after a benign biopsy than the BCRAT.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3