BI 836845, a fully human IGF ligand neutralizing antibody, to improve the efficacy of rapamycin by blocking rapamycin-induced AKT activation.

Author:

Adam Paul J.1,Friedbichler Katrin1,Hofmann Marco H.1,Bogenrieder Thomas1,Borges Eric1,Adolf Guenther R.1

Affiliation:

1. Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria

Abstract

3092 Background: Analogs of rapamycin (rapalogs) targeting mammalian target of rapamycin complex 1 (mTORC1) have shown clinical activity in several cancers. Nonetheless, preclinical and clinical data suggest that there may be intrinsic resistance to rapalogs through a feedback loop which activates upstream signaling when mTORC1 is blocked. BI 836845 is a fully human antibody, currently in phase I clinical trials, which potently neutralizes both IGF-1 and IGF-2. We tested whether BI 836845 is able to improve the efficacy of rapamycin by inhibiting upstream signaling in preclinical models. Methods: Cancer cell lines were profiled in vitro and in vivo for sensitivity to BI 836845 and rapamycin, alone or in combination. Mitogenic signaling was examined by measuring levels of phosphorylated AKT (pAKT) using Western blot analysis. IGF bioactivity was determined using a cellular IGF-1R phosphorylation ELISA. Results: The combination of BI 836845 and rapamycin was more effective than either agent alone at inhibiting the proliferation of Ewing’s sarcoma cells cultured in vitro as well as in a nude mouse xenograft model in vivo. Analysis of cell signaling upstream of mTOR demonstrated that treatment with rapamycin alone resulted in elevated pAKT, indicating feedback loop activation. BI 836845 treatment alone or in combination with rapamycin inhibited AKT phosphorylation, demonstrating that the rapamycin-induced increase in pAKT was due to elevated IGF bioactivity. Consistent with this we demonstrated that rapamycin increased IGF bioactivity in mice and that this could be inhibited by BI 836845. We extended these studies to include other cancer cell lines and profiled the correlation between improved efficacy of the combination with BI 836845 inhibition of rapamycin-induced feedback. A correlation has been observed for cancer cells derived from several indications. Conclusions: Rapamycin treatment increases AKT activation via elevated IGF ligand bioactivity. This effect can be inhibited by BI 836845, thus explaining the improved pre-clinical efficacy seen when both agents are combined. These data provide a rationale for the clinical combination of rapalogs and BI 836845.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer;Frontiers in Cell and Developmental Biology;2021-03-22

2. The insulin-like growth factor-I receptor (IGF-IR) in breast cancer: biology and treatment strategies;Tumor Biology;2016-07-21

3. The Role of mTOR Inhibitors in Breast Cancer;mTOR Inhibition for Cancer Therapy: Past, Present and Future;2016

4. Targeting Insulin and Insulin-Like Growth Factor Signaling in Breast Cancer;Journal of Mammary Gland Biology and Neoplasia;2012-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3