Validation of Predictive Analyses for Interim Decisions in Clinical Trials

Author:

Avalos-Pacheco Alejandra12ORCID,Ventz Steffen3ORCID,Arfè Andrea4ORCID,Alexander Brian M.56ORCID,Rahman Rifaquat57ORCID,Wen Patrick Y.8ORCID,Trippa Lorenzo910

Affiliation:

1. Applied Statistics Research Unit, Faculty of Mathematics and Geoinformation, TU Wien, Vienna, Austria

2. Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA

3. Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN

4. Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY

5. Dana-Farber Cancer Institute, Boston, MA

6. Foundation Medicine, Cambridge, MA

7. Harvard Medical School, Boston, MA

8. Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA

9. Department of Data Science, Dana-Farber Cancer Institute, Boston, MA

10. Harvard T.H. Chan School of Public Health, Boston, MA

Abstract

PURPOSE Adaptive clinical trials use algorithms to predict, during the study, patient outcomes and final study results. These predictions trigger interim decisions, such as early discontinuation of the trial, and can change the course of the study. Poor selection of the Prediction Analyses and Interim Decisions (PAID) plan in an adaptive clinical trial can have negative consequences, including the risk of exposing patients to ineffective or toxic treatments. METHODS We present an approach that leverages data sets from completed trials to evaluate and compare candidate PAIDs using interpretable validation metrics. The goal is to determine whether and how to incorporate predictions into major interim decisions in a clinical trial. Candidate PAIDs can differ in several aspects, such as the prediction models used, timing of interim analyses, and potential use of external data sets. To illustrate our approach, we considered a randomized clinical trial in glioblastoma. The study design includes interim futility analyses on the basis of the predictive probability that the final analysis, at the completion of the study, will provide significant evidence of treatment effects. We examined various PAIDs with different levels of complexity to investigate if the use of biomarkers, external data, or novel algorithms improved interim decisions in the glioblastoma clinical trial. RESULTS Validation analyses on the basis of completed trials and electronic health records support the selection of algorithms, predictive models, and other aspects of PAIDs for use in adaptive clinical trials. By contrast, PAID evaluations on the basis of arbitrarily defined ad hoc simulation scenarios, which are not tailored to previous clinical data and experience, tend to overvalue complex prediction procedures and produce poor estimates of trial operating characteristics such as power and the number of enrolled patients. CONCLUSION Validation analyses on the basis of completed trials and real world data support the selection of predictive models, interim analysis rules, and other aspects of PAIDs in future clinical trials.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3