The DNA Damaging Revolution: PARP Inhibitors and Beyond

Author:

Yap Timothy A.1,Plummer Ruth2,Azad Nilofer S.3,Helleday Thomas45

Affiliation:

1. Departments of Investigational Cancer Therapeutics (Phase I Program) and Thoracic/Head and Neck Medical Oncology, Institute for Applied Cancer Science, Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX

2. Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom

3. Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD

4. Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom

5. Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden

Abstract

Cancer-specific DNA repair defects are abundant in malignant tissue and present an opportunity to capitalize on these aberrations for therapeutic benefit. Early preclinical data demonstrated the concept of synthetic lethality between BRCA genetic defects and pharmacologic PARP inhibition, suggesting that there may be monotherapy activity with this class of agents and supporting the early trial testing of this molecularly driven approach. Although the first foray into the clinic for PARP inhibitors was in combination with DNA-damaging cytotoxic agents, clinical development was limited by the more-than-additive toxicity, in particular dose-limiting myelosuppression. As more tolerable single agents, PARP inhibitors are now approved for the treatment of ovarian cancer in different settings and BRCA-mutant breast cancers. Beyond PARP inhibitors, there is now a large armamentarium of potent and relatively selective inhibitors in clinical trial testing against key targets involved in the DNA damage response (DDR), including ATR, ATM, CHK1/2, WEE1, and DNA-PK. These agents are being developed for patients with molecularly selected tumors and in rational combinations with other molecularly targeted agents and immune checkpoint inhibitors. We detail the clinical progress made in the development of PARP inhibitors, review rational combinations, and discuss the development of emerging inhibitors against novel DDR targets, including DNA repair proteins, DNA damage signaling, and DNA metabolism.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3