Exploring Integrative Analysis Using the BioMedical Evidence Graph

Author:

Struck Adam1,Walsh Brian1,Buchanan Alexander1,Lee Jordan A.1,Spangler Ryan1,Stuart Joshua M.23,Ellrott Kyle1

Affiliation:

1. Biomedical Engineering, Oregon Health and Science University, Portland OR

2. Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA

3. University of California Santa Cruz Genomics Institute, University of California, Santa Cruz Santa Cruz, CA

Abstract

PURPOSE The analysis of cancer biology data involves extremely heterogeneous data sets, including information from RNA sequencing, genome-wide copy number, DNA methylation data reporting on epigenetic regulation, somatic mutations from whole-exome or whole-genome analyses, pathology estimates from imaging sections or subtyping, drug response or other treatment outcomes, and various other clinical and phenotypic measurements. Bringing these different resources into a common framework, with a data model that allows for complex relationships as well as dense vectors of features, will unlock integrated data set analysis. METHODS We introduce the BioMedical Evidence Graph (BMEG), a graph database and query engine for discovery and analysis of cancer biology. The BMEG is unique from other biologic data graphs in that sample-level molecular and clinical information is connected to reference knowledge bases. It combines gene expression and mutation data with drug-response experiments, pathway information databases, and literature-derived associations. RESULTS The construction of the BMEG has resulted in a graph containing > 41 million vertices and 57 million edges. The BMEG system provides a graph query–based application programming interface to enable analysis, with client code available for Python, Javascript, and R, and a server online at bmeg.io. Using this system, we have demonstrated several forms of cross–data set analysis to show the utility of the system. CONCLUSION The BMEG is an evolving resource dedicated to enabling integrative analysis. We have demonstrated queries on the system that illustrate mutation significance analysis, drug-response machine learning, patient-level knowledge-base queries, and pathway level analysis. We have compared the resulting graph to other available integrated graph systems and demonstrated the former is unique in the scale of the graph and the type of data it makes available.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3