Survival of the Fittest: Cancer Stem Cells in Therapeutic Resistance and Angiogenesis

Author:

Eyler Christine E.1,Rich Jeremy N.1

Affiliation:

1. From the Departments of Pharmacology and Cancer Biology, Medicine, and Surgery, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham NC

Abstract

In an increasing number of cancers, tumor populations called cancer stem cells (CSCs), or tumor-initiating cells, have been defined in functional assays of self-renewal and tumor initiation. Moreover, recent work in several different cancers has suggested the CSC population as a source of chemotherapy and radiation-therapy resistance within tumors. Work in glioblastoma and breast cancers supports the idea that CSCs may possess innate resistance mechanisms against radiation- and chemotherapy-induced cancer cell death, allowing them to survive and initiate tumor recurrence. Several resistance mechanisms have been proposed, including amplified checkpoint activation and DNA damage repair as well as increased Wnt/β-catenin and Notch signaling. Novel targeted therapies against the DNA damage checkpoint or stem-cell maintenance pathways may sensitize CSCs to radiation or other therapies. Another important category of cancer therapies are antiangiogenic and vascular targeting agents, which are also becoming integrated in the treatment paradigm of an increasing number of cancers. Recent results from our laboratory and others support a role for CSCs in the angiogenic drive as well as the mechanism of antiangiogenic agents. Identifying and targeting the molecular mechanisms responsible for CSC therapeutic resistance may improve the efficacy of current cancer therapies.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

Reference74 articles.

1. Stem cells, cancer, and cancer stem cells

2. Scheck AC, Shapiro JR, Coons SW, et al: Biological and molecular analysis of a low-grade recurrence of a glioblastoma multiforme. Clin Cancer Res 2:187,1996-199,

3. The root of the problem

4. Cancer Stem Cells: An Old Idea—A Paradigm Shift

5. Cohnheim J: Ueber entzundung und eiterung. Path Anat Physiol Klin Med 40:1,1867-79,

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3