Systems Pathology Approach for the Prediction of Prostate Cancer Progression After Radical Prostatectomy

Author:

Donovan Michael J.1,Hamann Stefan1,Clayton Mark1,Khan Faisal M.1,Sapir Marina1,Bayer-Zubek Valentina1,Fernandez Gerardo1,Mesa-Tejada Ricardo1,Teverovskiy Mikhail1,Reuter Victor E.1,Scardino Peter T.1,Cordon-Cardo Carlos1

Affiliation:

1. From the Memorial Sloan-Kettering Cancer Center; Herbert Irving Comprehensive Cancer Center and Department of Pathology, Columbia University, New York; and Aureon Laboratories Inc, Yonkers, NY

Abstract

Purpose For patients with prostate cancer treated by radical prostatectomy, no current personalized tools predict clinical failure (CF; metastasis and/or androgen-independent disease). We developed such a tool through integration of clinicopathologic data with image analysis and quantitative immunofluorescence of prostate cancer tissue. Patients and Methods A prospectively designed algorithm was applied retrospectively to a cohort of 758 patients with clinically localized or locally advanced prostate cancer. A model predicting distant metastasis and/or androgen-independent recurrence was derived from features selected through supervised multivariate learning. Performance of the model was estimated using the concordance index (CI). Results We developed a predictive model using a training set of 373 patients with 33 CF events. The model includes androgen receptor (AR) levels, dominant prostatectomy Gleason grade, lymph node involvement, and three quantitative characteristics from hematoxylin and eosin staining of prostate tissue. The model had a CI of 0.92, sensitivity of 90%, and specificity of 91% for predicting CF within 5 years after prostatectomy. Model validation on an independent cohort of 385 patients with 29 CF events yielded a CI of 0.84, sensitivity of 84%, and specificity of 85%. High levels of AR predicted shorter time to castrate prostate-specific antigen increase after androgen deprivation therapy (ADT). Conclusion The integration of clinicopathologic variables with imaging and biomarker data (systems pathology) resulted in a highly accurate tool for predicting CF within 5 years after prostatectomy. The data support a role for AR signaling in clinical progression and duration of response to ADT.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3