Affiliation:
1. From the Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi; and Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
Abstract
Purpose The CYP3A and CYP2D6 enzymes play a major role in converting tamoxifen to its active metabolites. CYP3A is a highly inducible enzyme, regulated mainly by pregnane X receptor (PXR). This study assessed the association between genetic polymorphisms of CYP2D6 and PXR, and tamoxifen pharmacokinetics (PK) and clinical outcomes in patients with breast cancer. Patients and Methods Plasma concentrations of tamoxifen and its metabolites were measured. Common alleles of CYP2D6 and PXR were identified in 202 patients treated with tamoxifen 20 mg daily for more than 8 weeks. Twelve of the 202 patients and an additional nine patients with metastatic breast cancer receiving tamoxifen were assessed for clinical outcome in correlation with genotypes. Results Patients carrying CYP2D6*10/*10 (n = 49) demonstrated significantly lower steady-state plasma concentrations of 4-hydroxy-N-desmethyltamoxifen and 4-hydroxytamoxifen than did those with other genotypes (n = 153; 4-hydroxy-N-desmethyltamoxifen: 7.9 v 18.9 ng/mL, P < .0001; 4-hydroxytamoxifen: 1.5 v 2.6 ng/mL, P < .0001), whereas no difference by PXR genotypes was found. CYP2D6*10/*10 was significantly more frequent among nonresponders with MBC (100% v 50%, P = .0186). In Cox proportional hazard analysis, CYP2D6 genotype and number of disease sites were significant factors affecting time to progression (TTP). The median TTP for patients receiving tamoxifen was shorter in those carrying CYP2D6*10/*10 than for others (5.0 v 21.8 months, P = .0032) Conclusion CYP2D6*10/*10 is associated with lower steady-state plasma concentrations of active tamoxifen metabolites, which could possibly influence the clinical outcome by tamoxifen in Asian breast cancer patients.
Publisher
American Society of Clinical Oncology (ASCO)
Cited by
224 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献