Development and Validation of a Cytogenetic Prognostic Index Predicting Survival in Multiple Myeloma

Author:

Perrot Aurore1,Lauwers-Cances Valérie2,Tournay Elodie2,Hulin Cyrille3,Chretien Marie-Lorraine4,Royer Bruno5,Dib Mamoun6,Decaux Olivier7,Jaccard Arnaud8,Belhadj Karim9,Brechignac Sabine10,Fontan Jean11,Voillat Laurent12,Demarquette Hélène13,Collet Philippe14,Rodon Philippe15,Sohn Claudine16,Lifermann François17,Orsini-Piocelle Frédérique18,Richez Valentine19,Mohty Mohamad20,Macro Margaret21,Minvielle Stéphane22,Moreau Philippe22,Leleu Xavier23,Facon Thierry24,Attal Michel25,Avet-Loiseau Hervé25,Corre Jill25

Affiliation:

1. Centre Hospitalier Régional Universitaire Nancy, Nancy, France

2. Centre Hospitalier Universitaire Toulouse, Toulouse, France

3. Centre Hospitalier Universitaire Bordeaux, Bordeaux, France

4. Centre Hospitalier Universitaire Dijon, Dijon, France

5. Centre Hospitalier Universitaire Amiens, Amiens, France

6. Centre Hospitalier Universitaire Angers, Angers, France

7. Centre Hospitalier Universitaire Rennes, Rennes, France

8. Centre Hospitalier Universitaire Limoges, Limoges, France

9. Centre Hospitalier Universitaire Créteil, Créteil, France

10. Centre Hospitalier Universitaire Bobigny, Bobigny, France

11. Centre Hospitalier Universitaire Besancon, Besançon, France

12. Centre Hospitalier Chalon sur Saône William Morey, Chalon-sur-Saône, France

13. Centre Hospitalier de Dunkerque, Dunkirk, France

14. Centre Hospitalier Universitaire Saint-Étienne, Saint-Étienne, France

15. Centre Hospitalier Périgueux, Périgueux, France

16. Centre Hospitalier Toulon, Toulon, France

17. Centre Hospitalier Dax, Dax, France

18. Centre Hospitalier Annecy Genevois, Metz-Tessy, France

19. Centre Hospitalier Universitaire Nice, Nice, France

20. Centre Hospitalier Universitaire Paris, Paris, France

21. Centre Hospitalier Universitaire Caen Normandie, Caen, France

22. Centre Hospitalier Universitaire Nantes, Nantes, France

23. Centre Hospitalier Universitaire Poitiers, Poitiers, France

24. Centre Hospitalier Régional Universitaire Lille, Lille, France

25. Institut Universitaire du Cancer de Toulouse-Oncopole and Centre de Recherches en Cancérologie de Toulouse Institut National de la Santé et de la Recherche Médicale, Toulouse, France

Abstract

PURPOSE The wide heterogeneity in multiple myeloma (MM) outcome is driven mainly by cytogenetic abnormalities. The current definition of high-risk profile is restrictive and oversimplified. To adapt MM treatment to risk, we need to better define a cytogenetic risk classification. To address this issue, we simultaneously examined the prognostic impact of del(17p); t(4;14); del(1p32); 1q21 gain; and trisomies 3, 5, and 21 in a cohort of newly diagnosed patients with MM. METHODS Data were obtained from 1,635 patients enrolled in four trials implemented by the Intergroupe Francophone du Myélome. The oldest collection of data were used for model development and internal validation. For external validation, one of the two independent data sets was used to assess the performance of the model in patients treated with more current regimens. Six cytogenetic abnormalities were identified as clinically relevant, and a prognostic index (PI) that was based on the parameter estimates of the multivariable Cox model was computed for all patients. RESULTS In all data sets, a higher PI was consistently associated with a poor survival outcome. Dependent on the validation cohorts used, hazard ratios for patients in the high-risk category for death were between six and 15 times higher than those of patients in the low-risk category. Among patients with t(4;14) or del(17p), we observed a worse survival in those classified in the high-risk category than in those in the intermediate-risk category. The PI showed good performance for discriminating between patients who died and those who survived (Harrell’s concordance index greater than 70%). CONCLUSION The cytogenetic PI improves the classification of newly diagnosed patients with MM in the high-risk group compared with current classifications. These findings may facilitate the development of risk-adapted treatment strategies.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3