DNA Methylation–Based Classifier for Accurate Molecular Diagnosis of Bone Sarcomas

Author:

Wu S. Peter1,Cooper Benjamin T.1,Bu Fang1,Bowman Christopher J.1,Killian J. Keith1,Serrano Jonathan1,Wang Shiyang1,Jackson Twana M.1,Gorovets Daniel1,Shukla Neerav1,Meyers Paul A.1,Pisapia David J.1,Gorlick Richard1,Ladanyi Marc1,Thomas Kristen1,Snuderl Matija1,Karajannis Matthias A.1

Affiliation:

1. S. Peter Wu, Benjamin T. Cooper, Fang Bu, Christopher J. Bowman, Shiyang Wang, Twana M. Jackson, Daniel Gorovets, Kristen Thomas, and Matija Snuderl, New York University Langone Medical Center; J. Keith Killian, Neerav Shukla, Paul A. Meyers, Marc Ladanyi, and Matthias A. Karajannis, Memorial Sloan Kettering Cancer Center; David J. Pisapia, Weill Cornell Medical College, New York; and Richard Gorlick, Albert Einstein College of Medicine, Bronx, NY.

Abstract

Purpose Pediatric sarcomas provide a unique diagnostic challenge. There is considerable morphologic overlap between entities, increasing the importance of molecular studies in the diagnosis, treatment, and identification of therapeutic targets. We developed and validated a genome-wide DNA methylation–based classifier to differentiate between osteosarcoma, Ewing sarcoma, and synovial sarcoma. Methods DNA methylation status of 482,421 CpG sites in 10 Ewing sarcoma, 11 synovial sarcoma, and 15 osteosarcoma samples were determined using the Illumina Infinium HumanMethylation450 array. We developed a random forest classifier trained from the 400 most differentially methylated CpG sites within the training set of 36 sarcoma samples. This classifier was validated on data drawn from The Cancer Genome Atlas synovial sarcoma, TARGET-Osteosarcoma, and a recently published series of Ewing sarcoma. Results Methylation profiling revealed three distinct patterns, each enriched with a single sarcoma subtype. Within the validation cohorts, all samples from The Cancer Genome Atlas were accurately classified as synovial sarcoma (10 of 10; sensitivity and specificity, 100%), all but one sample from TARGET-Osteosarcoma were classified as osteosarcoma (85 of 86; sensitivity, 98%; specificity, 100%), and 14 of 15 Ewing sarcoma samples were classified correctly (sensitivity, 93%; specificity, 100%). The single misclassified osteosarcoma sample demonstrated high EWSR1 and ETV1 expression on RNA sequencing, although no fusion was found on manual curation of the transcript sequence. Two additional clinical samples that were difficult to classify by morphology and molecular methods were classified as osteosarcoma; one had been suspected of being a synovial sarcoma and the other of being Ewing sarcoma on initial diagnosis. Conclusion Osteosarcoma, synovial sarcoma, and Ewing sarcoma have distinct epigenetic profiles. Our validated methylation-based classifier can be used to provide diagnostic assistance when histologic and standard techniques are inconclusive.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3