Affiliation:
1. Okyaz Eminaga, Stanford Medical School, Stanford, CA; University Hospital of Cologne, Cologne, France; Nurettin Eminaga, St Mauritius Therapy Clinic, Meerbusch; Axel Semjonow, University Hospital Muenster; and Bernhard Breil, Niederrhein University of Applied Sciences, Krefeld, Germany.
Abstract
Purpose The recognition of cystoscopic findings remains challenging for young colleagues and depends on the examiner’s skills. Computer-aided diagnosis tools using feature extraction and deep learning show promise as instruments to perform diagnostic classification. Materials and Methods Our study considered 479 patient cases that represented 44 urologic findings. Image color was linearly normalized and was equalized by applying contrast-limited adaptive histogram equalization. Because these findings can be viewed via cystoscopy from every possible angle and side, we ultimately generated images rotated in 10-degree grades and flipped them vertically or horizontally, which resulted in 18,681 images. After image preprocessing, we developed deep convolutional neural network (CNN) models (ResNet50, VGG-19, VGG-16, InceptionV3, and Xception) and evaluated these models using F1 scores. Furthermore, we proposed two CNN concepts: 90%-previous-layer filter size and harmonic-series filter size. A training set (60%), a validation set (10%), and a test set (30%) were randomly generated from the study data set. All models were trained on the training set, validated on the validation set, and evaluated on the test set. Results The Xception-based model achieved the highest F1 score (99.52%), followed by models that were based on ResNet50 (99.48%) and the harmonic-series concept (99.45%). All images with cancer lesions were correctly determined by these models. When the focus was on the images misclassified by the model with the best performance, 7.86% of images that showed bladder stones with indwelling catheter and 1.43% of images that showed bladder diverticulum were falsely classified. Conclusion The results of this study show the potential of deep learning for the diagnostic classification of cystoscopic images. Future work will focus on integration of artificial intelligence–aided cystoscopy into clinical routines and possibly expansion to other clinical endoscopy applications.
Publisher
American Society of Clinical Oncology (ASCO)
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献