Algorithm to Identify Systemic Cancer Therapy Treatment Using Structured Electronic Data

Author:

Carroll Nikki M.1,Burniece Kate M.1,Holzman Jeff1,McQuillan Deanna B.1,Plata Angela1,Ritzwoller Debra P.1

Affiliation:

1. All authors: Institute for Health Research, Kaiser Permanente Colorado, Denver, CO.

Abstract

Purpose With the shift in the majority of oncology clinical care in the United States from paper records to electronic health records, researchers need efficient and validated processes to obtain accurate data about the entire treatment history of patients diagnosed with cancer. The objective of this study was to develop and validate an algorithm that is agnostic to the source of data but that can identify specific regimens in the entire course of systemic therapy treatment for patients diagnosed with breast, colorectal, or lung cancer. Methods A cohort of patients with incident breast, colorectal, and lung cancer were randomly distributed into six groups. The algorithm was iteratively modified, and the performance was assessed until no additional modifications could be identified in the first three groups. The performance of the algorithm was confirmed in the three groups that remained. Results The final model produced ranges of sensitivity between 97.2% and 100% for first-course systemic therapy across all cancers, with a false-positive rate of 0%. The algorithm matched the exact number of courses and the exact regimens of systemic therapy agents as captured by infusion, pharmacy, and procedure electronic medical record data for all courses of therapy 88% to 100% of the time. Conclusion Use of our validated algorithm that characterizes entire courses of systemic therapy treatment in patients diagnosed with breast, colorectal, and lung cancer will allow researchers in a variety of settings to conduct comparative effectiveness studies related to the uptake, safety, outcomes, and costs associated with the use of both novel and standard regimens.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3