Breath biopsy early detection of lung cancer using an EVOC probe targeting tumor-specific extracellular β-glucuronidase.

Author:

Labuschagne Christiaan Frederick1,Smith Rob1,Kumar Neelam2,Allsworth Max1,Boyle Billy1,Janes Sam3,Crosbie Phil4,Rintoul Robert5

Affiliation:

1. Owlstone Medical, Cambridge, United Kingdom;

2. The Lungs for Living Research Centre, Division of Medicine, London, United Kingdom;

3. Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom;

4. North West Lung Centre, University Hospital of South Manchester, Wythenshawe, United Kingdom;

5. Papworth Hospital, Cambridge, United Kingdom;

Abstract

2569 Background: Lung cancer is a leading cause of mortality with 5-year survival less than 20%, largely a result of many cases being diagnosed late. Early detection can increase cancer survival up to 13-fold underscoring the need for effective screening. Targeted Low dose computed tomography (LDCT) has been shown to be effective but its impact to date has been limited due to slow adoption and variable uptake in high-risk populations. Breath analysis represents a non-invasive screening approach either alone or alongside LDCT. Numerous studies have investigated potential endogenous breath biomarkers of lung cancer. Many have produced promising results but to date, no validated biomarkers with clear connections to cancer metabolism have been revealed. We have explored an alternative, probe-based approach based around Exogenous Volatile Organic Compound Probes (EVOC Probes). The probes target tumour associated extracellular b-glucuronidase, a glycosidase enzyme that normally resides within lysosomes. Methods: We use a hydrophilic non cell permeable substrate probe D5-ethyl-βD-glucuronide (D5-EtGlu) that upon hydrolysis by the target enzyme releases D5-ethanol, a unique volatile reporter molecule detectable on breath. This provides a readout of tumour associated enzyme activity using breath analysis. Results: Administering D5-EtGlu to mice resulted in tumour specific release of D5-ethanol, enabling discrimination between healthy and tumour bearing animals. Increased expression of b-glucuronidase in lung cancer tissue and the tumour microenvironment was confirmed with immunohistochemistry (IHC) in clinical samples. A phase 1a clinical trial administered D5-EtGlu to healthy individuals in a single ascending dose study to establish safety and background D5-ethanol levels in healthy individuals. This resulted in no adverse events and low/no D5-ethanol signal verifying the inaccessibility of D5-EtGlu to intracellular b-glucuronidase. The next stage, currently ongoing, is a proof of mechanism in humans. D5-EtGlu is administered intravenously to confirmed lung cancer patients followed by breath analysis. D5-ethanol breath levels will be compared to cancer free individuals receiving the same dose of D5-EtGlu. Conclusions: Non-invasive breath testing has great potential to contribute to diagnosis for lung cancer including a potential role in screening. Our current work is evaluating the use of an administered probe to stimulate tumour-specific enzyme activity and produce a marker detectable on breath. Continued success could result in a sensitive and highly specific method for lung cancer early detection.

Funder

Owlstone Medical.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3