Deep Learning for Natural Language Processing in Urology: State-of-the-Art Automated Extraction of Detailed Pathologic Prostate Cancer Data From Narratively Written Electronic Health Records

Author:

Leyh-Bannurah Sami-Ramzi1,Tian Zhe1,Karakiewicz Pierre I.1,Wolffgang Ulrich1,Sauter Guido1,Fisch Margit1,Pehrke Dirk1,Huland Hartwig1,Graefen Markus1,Budäus Lars1

Affiliation:

1. Sami-Ramzi Leyh-Bannurah, Dirk Pehrke, Hartwig Huland, Markus Graefen, and Lars Budäus, Prostate Cancer Center Hamburg-Eppendorf; Sami-Ramzi Leyh-Bannurah, Margit Fisch, and Guido Sauter, University Medical Center Hamburg-Eppendorf, Hamburg; Ulrich Wolffgang, University of Muenster, Muenster, Germany; and Zhe Tian and Pierre I. Karakiewicz, University of Montreal Health Center, Montreal, Canada.

Abstract

Purpose Entering all information from narrative documentation for clinical research into databases is time consuming, costly, and nearly impossible. Even high-volume databases do not cover all patient characteristics and drawn results may be limited. A new viable automated solution is machine learning based on deep neural networks applied to natural language processing (NLP), extracting detailed information from narratively written (eg, pathologic radical prostatectomy [RP]) electronic health records (EHRs). Methods Within an RP pathologic database, 3,679 RP EHRs were randomly split into 70% training and 30% test data sets. Training EHRs were automatically annotated, providing a semiautomatically annotated corpus of narratively written pathologic reports with initially context-free gold standard encodings. Primary and secondary Gleason pattern, corresponding percentages, tumor stage, nodal stage, total volume, tumor volume and diameter, and surgical margin were variables of interest. Second, state-of-the-art NLP techniques were used to train an industry-standard language model for pathologic EHRs by transfer learning. Finally, accuracy of the named entity extractors was compared with the gold standard encodings. Results Agreement rates (95% confidence interval) for primary and secondary Gleason patterns each were 91.3% (89.4 to 93.0), corresponding to the following: Gleason percentages, 70.5% (67.6 to 73.3) and 80.9% (78.4 to 83.3); tumor stage, 99.3% (98.6 to 99.7); nodal stage, 98.7% (97.8 to 99.3); total volume, 98.3% (97.3 to 99.0); tumor volume, 93.3% (91.6 to 94.8); maximum diameter, 96.3% (94.9 to 97.3); and surgical margin, 98.7% (97.8 to 99.3). Cumulative agreement was 91.3%. Conclusion Our proposed NLP pipeline offers new abilities for precise and efficient data management from narrative documentation for clinical research. The scalable approach potentially allows the NLP pipeline to be generalized to other genitourinary EHRs, tumor entities, and other medical disciplines.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3