Identifying Women at High Risk for Breast Cancer Using Data From the Electronic Health Record Compared With Self-Report

Author:

Jiang Xinyi1,McGuinness Julia E.1,Sin Margaret1,Silverman Thomas1,Kukafka Rita1,Crew Katherine D.12

Affiliation:

1. Columbia University, New York, NY

2. Herbert Irving Comprehensive Cancer Center, New York, NY

Abstract

PURPOSE A barrier to chemoprevention uptake among high-risk women is the lack of routine breast cancer risk assessment in the primary care setting. We calculated breast cancer risk using the Breast Cancer Surveillance Consortium (BCSC) model, accounting for age, race/ethnicity, first-degree family history of breast cancer, benign breast disease, and mammographic density, using data collected from the electronic health records (EHRs) and self-reports. PATIENTS AND METHODS Among women undergoing screening mammography, we enrolled those age 35 to 74 years without a prior history of breast cancer. Data on demographics, first-degree family history, breast radiology, and pathology reports were extracted from the EHR. We assessed agreement between the EHR and self-report on information about breast cancer risk. RESULTS Among 9,514 women with known race/ethnicity, 1,443 women (15.2%) met high-risk criteria based upon a 5-year invasive breast cancer risk of 1.67% or greater according to the BCSC model. Among 1,495 women with both self-report and EHR data, more women with a first-degree family history of breast cancer (14.6% v 4.4%) and previous breast biopsies (21.3% v 11.3%) were identified by self-report versus EHR, respectively. However, more women with atypia and lobular carcinoma in situ were identified from the EHR. There was moderate agreement in identification of high-risk women between EHR and self-report data (κ, 0.48; 95% CI, 0.42-0.54). CONCLUSION By using EHR data, we determined that 15% of women undergoing screening mammography had a high risk for breast cancer according to the BCSC model. There was moderate agreement between information on breast cancer risk derived from the EHR and self-report. Examining EHR data may serve as an initial screen for identifying women eligible for breast cancer chemoprevention.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3