Claims-Based Approach to Predict Cause-Specific Survival in Men With Prostate Cancer

Author:

Riviere Paul1,Tokeshi Christopher2,Hou Jiayi1,Nalawade Vinit1,Sarkar Reith1,Paravati Anthony J.1,Schiaffino Melody3,Rose Brent1,Xu Ronghui1,Murphy James D.1

Affiliation:

1. University of California, San Diego, La Jolla, CA

2. University of Hawaii, Honolulu, HI

3. Institute for Behavioral and Community Health, San Diego State University, San Diego, CA

Abstract

PURPOSE Treatment decisions about localized prostate cancer depend on accurate estimation of the patient’s life expectancy. Current cancer and noncancer survival models use a limited number of predefined variables, which could restrict their predictive capability. We explored a technique to create more comprehensive survival prediction models using insurance claims data from a large administrative data set. These data contain substantial information about medical diagnoses and procedures, and thus may provide a broader reflection of each patient’s health. METHODS We identified 57,011 Medicare beneficiaries with localized prostate cancer diagnosed between 2004 and 2009. We constructed separate cancer survival and noncancer survival prediction models using a training data set and assessed performance on a test data set. Potential model inputs included clinical and demographic covariates, and 8,971 distinct insurance claim codes describing comorbid diseases, procedures, surgeries, and diagnostic tests. We used a least absolute shrinkage and selection operator technique to identify predictive variables in the final survival models. Each model’s predictive capacity was compared with existing survival models with a metric of explained randomness (ρ2) ranging from 0 to 1, with 1 indicating an ideal prediction. RESULTS Our noncancer survival model included 143 covariates and had improved survival prediction (ρ2 = 0.60) compared with the Charlson comorbidity index (ρ2 = 0.26) and Elixhauser comorbidity index (ρ2 = 0.26). Our cancer-specific survival model included nine covariates, and had similar survival predictions (ρ2 = 0.71) to the Memorial Sloan Kettering prediction model (ρ2 = 0.68). CONCLUSION Survival prediction models using high-dimensional variable selection techniques applied to claims data show promise, particularly with noncancer survival prediction. After further validation, these analyses could inform clinical decisions for men with prostate cancer.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3