Rapid-Learning System for Cancer Care

Author:

Abernethy Amy P.1,Etheredge Lynn M.1,Ganz Patricia A.1,Wallace Paul1,German Robert R.1,Neti Chalapathy1,Bach Peter B.1,Murphy Sharon B.1

Affiliation:

1. From the Duke Comprehensive Cancer Center; Duke University Medical Center, Durham, NC; George Washington University; Institute of Medicine, Washington, DC; University of California, Los Angeles; Kaiser Permanente, Oakland, CA; National Center for Chronic Disease Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA; IBM Research, Hawthorne; and Memorial Sloan-Kettering Cancer Center, New York, NY.

Abstract

Compelling public interest is propelling national efforts to advance the evidence base for cancer treatment and control measures and to transform the way in which evidence is aggregated and applied. Substantial investments in health information technology, comparative effectiveness research, health care quality and value, and personalized medicine support these efforts and have resulted in considerable progress to date. An emerging initiative, and one that integrates these converging approaches to improving health care, is “rapid-learning health care.” In this framework, routinely collected real-time clinical data drive the process of scientific discovery, which becomes a natural outgrowth of patient care. To better understand the state of the rapid-learning health care model and its potential implications for oncology, the National Cancer Policy Forum of the Institute of Medicine held a workshop entitled “A Foundation for Evidence-Driven Practice: A Rapid-Learning System for Cancer Care” in October 2009. Participants examined the elements of a rapid-learning system for cancer, including registries and databases, emerging information technology, patient-centered and -driven clinical decision support, patient engagement, culture change, clinical practice guidelines, point-of-care needs in clinical oncology, and federal policy issues and implications. This Special Article reviews the activities of the workshop and sets the stage to move from vision to action.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3