Automated Extraction of Tumor Staging and Diagnosis Information From Surgical Pathology Reports

Author:

Abedian Sajjad1ORCID,Sholle Evan T.12ORCID,Adekkanattu Prakash M.1,Cusick Marika M.1ORCID,Weiner Stephanie E.1ORCID,Shoag Jonathan E.2ORCID,Hu Jim C.2,Campion Thomas R.1345ORCID

Affiliation:

1. Information Technologies and Services Department, Weill Cornell Medicine, New York, NY

2. Department of Population Health Sciences, Weill Cornell Medicine, New York, NY

3. Department of Urology, Weill Cornell Medicine, New York, NY

4. Clinical and Translational Science Center, Weill Cornell Medicine, New York, NY

5. Department of Pediatrics, Weill Cornell Medicine, New York, NY

Abstract

PURPOSE Typically stored as unstructured notes, surgical pathology reports contain data elements valuable to cancer research that require labor-intensive manual extraction. Although studies have described natural language processing (NLP) of surgical pathology reports to automate information extraction, efforts have focused on specific cancer subtypes rather than across multiple oncologic domains. To address this gap, we developed and evaluated an NLP method to extract tumor staging and diagnosis information across multiple cancer subtypes. METHODS The NLP pipeline was implemented on an open-source framework called Leo. We used a total of 555,681 surgical pathology reports of 329,076 patients to develop the pipeline and evaluated our approach on subsets of reports from patients with breast, prostate, colorectal, and randomly selected cancer subtypes. RESULTS Averaged across all four cancer subtypes, the NLP pipeline achieved an accuracy of 1.00 for International Classification of Diseases, Tenth Revision codes, 0.89 for T staging, 0.90 for N staging, and 0.97 for M staging. It achieved an F1 score of 1.00 for International Classification of Diseases, Tenth Revision codes, 0.88 for T staging, 0.90 for N staging, and 0.24 for M staging. CONCLUSION The NLP pipeline was developed to extract tumor staging and diagnosis information across multiple cancer subtypes to support the research enterprise in our institution. Although it was not possible to demonstrate generalizability of our NLP pipeline to other institutions, other institutions may find value in adopting a similar NLP approach—and reusing code available at GitHub—to support the oncology research enterprise with elements extracted from surgical pathology reports.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3