Human pharmacokinetic characterization and in vitro study of the interaction between doxorubicin and paclitaxel in patients with breast cancer.

Author:

Gianni L,Viganò L,Locatelli A,Capri G,Giani A,Tarenzi E,Bonadonna G

Abstract

PURPOSE We performed a pharmacologic investigation of paclitaxel (PTX) infused over 3 hours and bolus doxorubicin (DOX) to assess the role of sequence, interval between drugs, and duration of doxorubicin infusion on paclitaxel and anthracycline plasma disposition. We also explored possible mechanisms of pharmacokinetic interference involving the physiologic role of the multidrug resistance phenotype in anthracycline and taxane biliary excretion. PATIENTS AND METHODS Pharmacokinetics was performed in 80 cycles and 36 women with previously untreated metastatic breast cancer. PTX, DOX, and their metabolites 6 alpha-hydroxyl-PTX (6 alpha OH-PTX) and doxorubicinol (DOL) were measured by high-pressure liquid chromatography (HPLC). Human breast cancer MCF-7 wild-type (WT) and resistant (TH) cell lines were cultured in whole human plasma to study anthracycline retention after treatment with different combinations of PTX, Cremophor EL (CEL) (PEG35 castor oil; BASF, Parsippany, NJ), and DOX. RESULTS Pharmacokinetic interference between PTX and DOX was responsible for nonlinearity of DOX plasma disposition and increased concentrations of DOX and DOL. These effects were PTX dose-dependent, DOX concentration-dependent, and likely a result of interference at the level of liver elimination. In view of the physiologic role of P-glycoproteins (P-gp) in xenobiotic biliary excretion, retention of DOX was assessed in MCF-7 WT and MCF-7 TH cells. Intracellular was significantly higher in MCF-7 WT than MCF-7 TH (P < .05). However, concomitant exposure to DOX, PTX, and CEL caused similar DOX retention in both MCF-7 WT and TH cells. CONCLUSION PTX, as clinically formulated in CEL, is responsible for a nonlinear disposition of DOX and DOL. Nonlinearity is PTX- and DOX-dependent, and possibly caused by competition for biliary excretion of taxanes and anthracyclines mediated by P-gp. Nonlinearity indicates that even minor modifications of dose and infusion duration of DOX and PTX may lead to unpredictable pharmacodynamic consequences. The postulated role of P-gp suggests that CEL is clinically active, and advises caution in designing combinations of PTX with other drugs that are substrate for P-gp.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3