Transformation of the National Breast Cancer Guideline Into Data-Driven Clinical Decision Trees

Author:

Hendriks Mathijs P.1,Verbeek Xander A.A.M.2,van Vegchel Thijs2,van der Sangen Maurice J.C.3,Strobbe Luc J.A.4,Merkus Jos W.S.5,Zonderland Harmien M.6,Smorenburg Carolien H.7,Jager Agnes8,Siesling Sabine29

Affiliation:

1. Northwest Clinics, Alkmaar, the Netherlands

2. Netherlands Comprehensive Cancer Organization, Utrecht, the Netherlands

3. Catharina Hospital, Eindhoven, the Netherlands

4. Canisius Wilhelmina Hospital, Nijmegen, the Netherlands

5. Haga Teaching Hospital, The Hague, the Netherlands

6. University of Amsterdam, the Netherlands

7. Netherlands Cancer Institute, Amsterdam, the Netherlands

8. Erasmus MC Cancer Institute, Rotterdam, the Netherlands

9. University of Twente, Enschede, the Netherlands

Abstract

PURPOSE The essence of guideline recommendations often is intertwined in large texts. This impedes clinical implementation and evaluation and delays timely modular revisions needed to deal with an ever-growing amount of knowledge and application of personalized medicine. The aim of this project was to model guideline recommendations as data-driven clinical decision trees (CDTs) that are clinically interpretable and suitable for implementation in decision support systems. METHODS All recommendations of the Dutch national breast cancer guideline for nonmetastatic breast cancer were translated into CDTs. CDTs were constructed by nodes, branches, and leaves that represent data items (patient and tumor characteristics [eg, T stage]), data item values (eg, T2 or less), and recommendations (eg, chemotherapy), respectively. For all data items, source of origin was identified (eg, pathology), and where applicable, data item values were defined on the basis of existing classification and coding systems (eg, TNM, Breast Imaging Reporting and Data System, Systematized Nomenclature of Medicine). All unique routes through all CDTs were counted to measure the degree of data-based personalization of recommendations. RESULTS In total, 60 CDTs were necessary to cover the whole guideline and were driven by 114 data items. Data items originated from pathology (49%), radiology (27%), clinical (12%), and multidisciplinary team (12%) reports. Of all data items, 101 (89%) could be classified by existing classification and coding systems. All 60 CDTs could be integrated in an interactive decision support app that contained 376 unique patient subpopulations. CONCLUSION By defining data items unambiguously and unequivocally and coding them to an international coding system, it was possible to present a complex guideline as systematically constructed modular data-driven CDTs that are clinically interpretable and accessible in a decision support app.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3