Modeling Extraordinary Response Through Targeting Secondary Alterations in Fusion-Associated Sarcoma

Author:

Vanoli Fabio1ORCID,Song Evan1,Dermawan Josephine K.2ORCID,Fishinevich Eve1ORCID,Sung Patricia1,Min Soe S.1ORCID,Xie Ziyu1ORCID,de Traux de Wardin Henry1ORCID,Hwang Sinchun3ORCID,Maki Robert G.4ORCID,Antonescu Cristina R.1ORCID

Affiliation:

1. Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY

2. Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH

3. Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY

4. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY

Abstract

PURPOSE Targeted therapy in translocation-associated sarcomas has been limited to oncogenic activation of tyrosine kinases or ligands while gene fusions resulting in aberrant expression of transcription factors have been notoriously difficult to target. Moreover, secondary genetic alterations in sarcomas driven by translocations are uncommon, comprising mostly alterations in tumor suppressor genes ( TP53, CDKN2A/ B). Our study was triggered by an index patient showing a dramatic clinical response by targeting the secondary BRAF V600E mutation in a metastatic angiomatoid fibrous histiocytoma (AFH) harboring the typical EWSR1::CREB1 fusion. MATERIALS AND METHODS The patient, a 28-year-old female, was diagnosed with an AFH of the thigh and followed a highly aggressive clinical course, with rapid multifocal local recurrence within a year and widespread distant metastases (adrenal, bone, liver, lung). The tumor showed characteristic morphologic features, with histiocytoid cells intermixed with hemorrhagic cystic spaces and lymphoid aggregates. In addition to the pathognomonic EWSR1::CREB1 fusion, targeted DNA sequencing revealed in both primary and adrenal metastatic sites a hot spot BRAF V600E mutation and a CDKN2A/ B deletion. Accordingly, the patient was treated with a BRAF-MEK inhibitor combination (encorafenib/binimetinib) showing an excellent but short-lived response. RESULTS Using a CRISPR-Cas9 approach, we introduced the BRAF c.1799 T>A point mutation in human embryonic stem (hES) cells harboring a conditional EWSR1 (exon7):: CREB1 (exon7) translocation and further differentiated to mesenchymal progenitors (hES-MP) before fusion expression. The cells maintained the fusion transcript expression and the AFH core gene signature while responding to treatment with encorafenib and binimetinib. CONCLUSION These results highlight that additional targeted DNA NGS in chemotherapy-resistant translocation-associated sarcomas may reveal actionable oncogenic drivers occurring as secondary genetic events during disease progression.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3