Framework for the Use of External Controls to Evaluate Treatment Outcomes in Precision Oncology Trials

Author:

Siu Derrick H.W.12ORCID,Lin Frank P.Y.134ORCID,Cho Doah1ORCID,Lord Sarah J.15,Heller Gillian Z.16ORCID,Simes R. John1,Lee Chee Khoon17

Affiliation:

1. National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia

2. Department of Medical Oncology, Illawarra Cancer Care Centre, Wollongong, NSW, Australia

3. Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia

4. School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia

5. School of Medicine, University of Notre Dame, Sydney, NSW, Australia

6. Mathematics and Statistics, Macquarie University, Macquarie Park, NSW, Australia

7. Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia

Abstract

Advances in genomics have enabled anticancer therapies to be tailored to target specific genomic alterations. Single-arm trials (SATs), including those incorporated within umbrella, basket, and platform trials, are widely adopted when it is not feasible to conduct randomized controlled trials in rare biomarker-defined subpopulations. External controls (ECs), defined as control arm data derived outside the clinical trial, have gained renewed interest as a strategy to supplement evidence generated from SATs to allow comparative analysis. There are increasing examples demonstrating the application of EC in precision oncology trials. The prospective application of EC in conducting comparative studies is associated with distinct methodological challenges, the specific considerations for EC use in biomarker-defined subpopulations have not been adequately discussed, and a formal framework is yet to be established. In this review, we present a framework for conducting a prospective comparative analysis using EC. Key steps are (1) defining the purpose of using EC to address the study question, (2) determining if the external data are fit for purpose, (3) developing a transparent study protocol and a statistical analysis plan, and (iv) interpreting results and drawing conclusions on the basis of a prespecified hypothesis. We specify the considerations required for the biomarker-defined subpopulations, which include (1) specifying the comparator and biomarker status of the comparator group, (2) defining lines of treatment, (3) assessment of the biomarker testing panels used, and (4) assessment of cohort stratification in tumor-agnostic studies. We further discuss novel clinical trial designs and statistical techniques leveraging EC to propose future directions to advance evidence generation and facilitate drug development in precision oncology.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3