Combining Gene Expression Profiles and Clinical Parameters for Risk Stratification in Medulloblastomas

Author:

Fernandez-Teijeiro Ana1,Betensky Rebecca A.1,Sturla Lisa M.1,Kim John Y.H.1,Tamayo Pablo1,Pomeroy Scott L.1

Affiliation:

1. From the Division of Neuroscience, Department of Neurology, Department of Medicine, Children's Hospital; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School; Department of Biostatistics, Harvard School of Public Health, Boston; Whitehead Institute/MIT Center of Biomedical Research, MA Institute of Technology, Cambridge, MA; and Unidad de Oncologia Pediatrica, Hospital de Cruces-Baracaldo, Basque Country, Spain

Abstract

Purpose Stratification of risk in patients with medulloblastoma remains a challenge. As clinical parameters have been proven insufficient for accurately defining disease risk, molecular markers have become the focus of interest. Outcome predictions on the basis of microarray gene expression profiles have been the most accurate to date. We ask in a multivariate model whether clinical parameters enhance survival predictions of gene expression profiles. Patients and Methods In a cohort of 55 young patients (whose medulloblastoma samples have been analyzed previously for gene expression profile), associations between clinical and gene expression variables and survival were assessed using Cox proportional hazards models. Available clinical variables included age, stage (ie, the presence of disseminated disease at diagnosis), sex, histologic subtype, treatment, and status. Results Univariate analysis demonstrated expression profiles to be the only significant clinical prognostic factor (P = .03). In multivariate analysis, gene expression profiles predicted outcome independent of other criteria. Clinical criteria did not significantly contribute additional information for outcome predictions, although an exploratory analysis noted a trend for decreased survival of patients with metastases at diagnosis but favorable gene expression profile. Conclusion Gene expression profiling predicts medulloblastoma outcome independent of clinical variables. These results need to be validated in a larger prospective study.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3