Novel Artificial Neural Network for Early Detection of Prostate Cancer

Author:

Djavan Bob1,Remzi Mesut1,Zlotta Alexandre1,Seitz Christian1,Snow Peter1,Marberger Michael1

Affiliation:

1. From the Department of Urology, University of Vienna, Austria; Department of Urology, Erasme University Clinics of Brussels, Belgium; and Xaim, Inc, Colorado Springs, CO.

Abstract

PURPOSE: Two artificial neural networks (ANN) for the early detection of prostate cancer in men with total prostate-specific antigen (PSA) levels from 2.5 to 4 ng/mL and from 4 to 10 ng/mL were prospectively developed. The predictive accuracy of the ANN was compared with that obtained by use of conventional statistical analysis of standard PSA parameters. PATIENTS AND METHODS: Consecutive men with a serum total PSA level between 4 and 10 ng/mL (n = 974) and between 2.5 and 4 ng/mL (n = 272) were analyzed. A separate ANN model was developed for each group of patients. Analyses were performed to determine the presence of prostate cancer. RESULTS: The area under the receiver operator characteristic (ROC) curve (AUC) was 87.6% and 91.3% for the 2.5 to 4 ng/mL and 4 to 10 ng/mL ANN models, respectively. For the latter model, the AUC generated by the ANN was significantly higher than that produced by the single variables of total PSA, percentage of free PSA, PSA density of the transition zone (TZ), and TZ volume (P < .01), but not significantly higher compared with multivariate analysis. For the 2.5 to 4 ng/mL model, the AUC of the ANN ROC curve was significantly higher than the AUCs for percentage of free PSA (P = .0239), PSA-TZ (P = .0204), and PSA density and total prostate volume (P < .01 for both). CONCLUSION: The predictive accuracy of the ANN was superior to that of conventional PSA parameters. ANN models might change the way patients referred for early prostate cancer detection are counseled regarding the need for prostate biopsy.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3