Cloud-Based Federated Learning Implementation Across Medical Centers

Author:

Rajendran Suraj12,Obeid Jihad S.3,Binol Hamidullah4,D`Agostino Ralph5,Foley Kristie6,Zhang Wei1,Austin Philip7,Brakefield Joey8,Gurcan Metin N.4,Topaloglu Umit145

Affiliation:

1. Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC

2. Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA

3. Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC

4. Center for Biomedical Informatics, Wake Forest University School of Medicine, Winston Salem, NC

5. Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston Salem, NC

6. Department of Implementation Science, Wake Forest University School of Medicine, Winston Salem, NC

7. Databricks, Boca Raton, FL

8. Microsoft, Atlanta, GA

Abstract

PURPOSE Building well-performing machine learning (ML) models in health care has always been exigent because of the data-sharing concerns, yet ML approaches often require larger training samples than is afforded by one institution. This paper explores several federated learning implementations by applying them in both a simulated environment and an actual implementation using electronic health record data from two academic medical centers on a Microsoft Azure Cloud Databricks platform. MATERIALS AND METHODS Using two separate cloud tenants, ML models were created, trained, and exchanged from one institution to another via a GitHub repository. Federated learning processes were applied to both artificial neural networks (ANNs) and logistic regression (LR) models on the horizontal data sets that are varying in count and availability. Incremental and cyclic federated learning models have been tested in simulation and real environments. RESULTS The cyclically trained ANN showed a 3% increase in performance, a significant improvement across most attempts ( P < .05). Single weight neural network models showed improvement in some cases. However, LR models did not show much improvement after federated learning processes. The specific process that improved the performance differed based on the ML model and how federated learning was implemented. Moreover, we have confirmed that the order of the institutions during the training did influence the overall performance increase. CONCLUSION Unlike previous studies, our work has shown the implementation and effectiveness of federated learning processes beyond simulation. Additionally, we have identified different federated learning models that have achieved statistically significant performances. More work is needed to achieve effective federated learning processes in biomedicine, while preserving the security and privacy of the data.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3