Learnings From Precision Clinical Trial Matching for Oncology Patients Who Received NGS Testing

Author:

Jain Neha M.1ORCID,Culley Alison2,Micheel Christine M.3ORCID,Osterman Travis J.34ORCID,Levy Mia A.456ORCID

Affiliation:

1. Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN

2. Vanderbilt-Ingram Cancer Center, Clinical Trial Shared Resource, Vanderbilt University Medical Center, Nashville, TN

3. Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN

4. Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN

5. Department of Internal Medicine, Division of Hematology/Oncology, Rush University Medical Center, Chicago, IL

6. Rush University Cancer Center, Rush University Medical Center, Chicago, IL

Abstract

PURPOSE Tumor next-generation sequencing reports typically generate trial recommendations for patients based on their diagnosis and genomic profile. However, these require additional refinement and prescreening, which can add to physician burden. We wanted to use human prescreening efforts to efficiently refine these trial options and also elucidate the high-value parameters that have a major impact on efficient trial matching. METHODS Clinical trial recommendations were generated based on diagnosis and biomarker criteria using an informatics platform and were further refined by manual prescreening. The refined results were then compared with the initial trial recommendations and the reasons for false-positive matches were evaluated. RESULTS Manual prescreening significantly reduced the number of false positives from the informatics generated trial recommendations, as expected. We found that trial-specific criteria, especially recruiting status for individual trial arms, were a high value parameter and led to the largest number of automated false-positive matches. CONCLUSION Reflex clinical trial matching approaches that refine trial recommendations based on the clinical details as well as trial-specific criteria have the potential to help alleviate physician burden for selecting the most appropriate trial for their patient. Investing in publicly available resources that capture the recruiting status of a trial at the cohort or arm level would, therefore, allow us to make meaningful contributions to increase the clinical trial enrollments by eliminating false positives.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3