Affiliation:
1. From St Jude Children's Research Hospital; University of Tennessee Health Science Center, Memphis, TN; University of California, San Francisco, CA.
Abstract
Purpose Methotrexate plasma concentration is related to its clinical effects. Our aim was to identify the genetic basis of interindividual variability in methotrexate pharmacokinetics in children with newly diagnosed acute lymphoblastic leukemia (ALL). Patients and Methods We performed a genome-wide analysis of 500,568 germline single-nucleotide polymorphisms (SNPs) to identify how inheritance affects methotrexate plasma disposition among 434 children with ALL who received 3,014 courses of methotrexate at 2 to 5 g/m2. SNPs were validated in an independent cohort of 206 patients. Results Adjusting for age, race, sex, and methotrexate regimen, the most significant associations were with SNPs in the organic anion transporter polypeptide, SLCO1B1. Two SNPs in SLCO1B1, rs11045879 (P = 1.7 × 10−10) and rs4149081 (P = 1.7 × 10−9), were in linkage disequilibrium (LD) with each other (r2 = 1) and with a functional polymorphism in SLCO1B1, T521C (rs4149056; r2 > 0.84). rs11045879 and rs4149081 were validated in an independent cohort of 206 patients (P = .018 and P = .017), as were other SLCO1B1 SNPs residing in different LD blocks. SNPs in SLCO1B1 were also associated with GI toxicity (odds ratio, 15.3 to 16.4; P = .03 to .004). Conclusion A genome-wide interrogation identified inherited variations in a plausible, yet heretofore low-priority candidate gene, SLCO1B1, as important determinants of methotrexate's pharmacokinetics and clinical effects.
Publisher
American Society of Clinical Oncology (ASCO)
Cited by
291 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献