LFSPROShiny: An Interactive R/Shiny App for Prediction and Visualization of Cancer Risks in Families With Deleterious Germline TP53 Mutations

Author:

Nguyen Nam H.12,Dodd-Eaton Elissa B.1,Peng Gang3ORCID,Corredor Jessica L.4ORCID,Jiao Wenwei15ORCID,Woodman-Ross Jacynda4,Arun Banu K.46ORCID,Wang Wenyi1ORCID

Affiliation:

1. Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX

2. Department of Statistics, Rice University, Houston, TX

3. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN

4. Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX

5. Department of Statistics, North Caroline State University, Raleigh, NC

6. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX

Abstract

PURPOSE LFSPRO is an R library that implements risk prediction models for Li-Fraumeni syndrome (LFS), a genetic disorder characterized by deleterious germline mutations in the TP53 gene. To facilitate the use of these models in clinics, we developed LFSPROShiny, an interactive R/Shiny interface of LFSPRO that allows genetic counselors (GCs) to perform risk predictions without any programming components and further visualize the risk profiles of their patients to aid the decision-making process. METHODS LFSPROShiny implements two models that have been validated on multiple LFS patient cohorts: a competing risk model that predicts cancer-specific risks for the first primary and a recurrent-event model that predicts the risk of a second primary tumor. Starting with a visualization template, we keep regular contact with GCs, who ran LFSPROShiny in their counseling sessions, to collect feedback and discuss potential improvement. On receiving the family history as input, LFSPROShiny renders the family into a pedigree and displays the risk estimates of the family members in a tabular format. The software offers interactive overlaid side-by-side bar charts for visualization of the patients' cancer risks relative to the general population. RESULTS We walk through a detailed example to illustrate how GCs can run LFSPROShiny in clinics from data preparation to downstream analyses and interpretation of results with an emphasis on the utilities that LFSPROShiny provides to aid decision making. CONCLUSION Since December 2021, we have applied LFSPROShiny to over 100 families from counseling sessions at the MD Anderson Cancer Center. Our study suggests that software tools with easy-to-use interfaces are crucial for the dissemination of risk prediction models in clinical settings, hence serving as a guideline for future development of similar models.

Publisher

American Society of Clinical Oncology (ASCO)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3