Potential Role of Generative Adversarial Networks in Enhancing Brain Tumors

Author:

Muhammed Amr1ORCID,Bakheet Rafaat A.1,Kenawy Karam2ORCID,Ahmed Ahmed M.A.1,Abdelhamid Muhammed3,Soliman Walaa Gamal1ORCID

Affiliation:

1. Clinical Oncology Department, Sohag University Hospital, Sohag, Egypt

2. Neurosurgery Department, Sohag University Hospital, Sohag, Egypt

3. Neurology Department, Sohag General Hospital, Sohag, Egypt

Abstract

PURPOSE Contrast enhancement is necessary for visualizing, diagnosing, and treating brain tumors. Through this study, we aimed to examine the potential role of general adversarial neural networks in generating artificial intelligence–based enhancement of tumors using a lightweight model. PATIENTS AND METHODS A retrospective study was conducted on magnetic resonance imaging scans of patients diagnosed with brain tumors between 2020 and 2023. A generative adversarial neural network was built to generate images that would mimic the real contrast enhancement of these tumors. The performance of the neural network was evaluated quantitatively by VGG-16, ResNet, binary cross-entropy loss, mean absolute error, mean squared error, and structural similarity index measures. Regarding the qualitative evaluation, nine cases were randomly selected from the test set and were used to build a short satisfaction survey for experienced medical professionals. RESULTS One hundred twenty-nine patients with 156 scans were identified from the hospital database. The data were randomly split into a training set and validation set (90%) and a test set (10%). The VGG loss function for training, validation, and test sets were 2,049.8, 2,632.6, and 4,276.9, respectively. Additionally, the structural similarity index measured 0.366, 0.356, and 0.3192, respectively. At the time of submitting the article, 23 medical professionals responded to the survey. The median overall satisfaction score was 7 of 10. CONCLUSION Our network would open the door for using lightweight models in performing artificial contrast enhancement. Further research is necessary in this field to reach the point of clinical practicality.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3