Image-Based Subtype Classification for Glioblastoma Using Deep Learning: Prognostic Significance and Biologic Relevance

Author:

Yuan Min1,Ding Haolun2ORCID,Guo Bangwei3,Yang Miaomiao4,Yang Yaning2,Xu Xu Steven5ORCID

Affiliation:

1. Department of Health Data Science, Anhui Medical University, Hefei, China

2. Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, China

3. School of Data Science, University of Science and Technology of China, Hefei, China

4. Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China

5. Clinical Pharmacology and Quantitative Science, Genmab Inc, Princeton, NJ

Abstract

PURPOSE To apply deep learning algorithms to histopathology images, construct image-based subtypes independent of known clinical and molecular classifications for glioblastoma, and produce novel insights into molecular and immune characteristics of the glioblastoma tumor microenvironment. MATERIALS AND METHODS Using whole-slide hematoxylin and eosin images from 214 patients with glioblastoma in The Cancer Genome Atlas (TCGA), a fine-tuned convolutional neural network model extracted deep learning features. Biclustering was used to identify subtypes and image feature modules. Prognostic value of image subtypes was assessed via Cox regression on survival outcomes and validated with 189 samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data set. Morphological, molecular, and immune characteristics of glioblastoma image subtypes were analyzed. RESULTS Four distinct subtypes and modules (imClust1-4) were identified for the TCGA patients with glioblastoma on the basis of the image feature data. The glioblastoma image subtypes were significantly associated with overall survival (OS; P = .028) and progression-free survival ( P = .003). Apparent association was also observed for disease-specific survival ( P = .096). imClust2 had the best prognosis for all three survival end points (eg, after 25 months, imClust2 had >7% surviving patients than the other subtypes). Examination of OS in the external validation using the unseen CPTAC data set showed consistent patterns. Multivariable Cox analyses confirmed that the image subtypes carry unique prognostic information independent of known clinical and molecular predictors. Molecular and immune profiling revealed distinct immune compositions of the tumor microenvironment in different image subtypes and may provide biologic explanations for the patterns in patients' outcomes. CONCLUSION Our image-based subtype classification on the basis of deep learning models is a novel tool to refine risk stratification in cancers. The image subtypes detected for glioblastoma represent a promising prognostic biomarker with distinct molecular and immune characteristics and may facilitate developing novel, individualized immunotherapies for glioblastoma.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3