Development of an Electronic Health Record–Based Algorithm for Predicting Lung Cancer Screening Eligibility in the Population-Based Research to Optimize the Screening Process Lung Research Consortium

Author:

Burnett-Hartman Andrea N.1ORCID,Powers J. David1ORCID,Hixon Brian P.1ORCID,Carroll Nikki M.1ORCID,Frankland Timothy B.2ORCID,Honda Stacey A.23ORCID,Saia Chelsea4,Rendle Katharine A.4ORCID,Greenlee Robert T.5ORCID,Neslund-Dudas Christine6,Zheng Yingye7ORCID,Vachani Anil4ORCID,Ritzwoller Debra P.1ORCID

Affiliation:

1. Institute for Health Research, Kaiser Permanente Colorado, Aurora, CO

2. Center for Integrated Healthcare Research, Kaiser Permanente Hawaii, Oahu, HI

3. Hawaii Permanente Medical Group, Oahu, HI

4. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

5. Marshfield Clinic Research Institute, Marshfield, WI

6. Henry Ford Health and Henry Ford Cancer Institute, Detroit, MI

7. Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA

Abstract

PURPOSE Lung cancer screening (LCS) guidelines in the United States recommend LCS for those age 50-80 years with at least 20 pack-years smoking history who currently smoke or quit within the last 15 years. We tested the performance of simple smoking-related criteria derived from electronic health record (EHR) data and developed and tested the performance of a multivariable model in predicting LCS eligibility. METHODS Analyses were completed within the Population-based Research to Optimize the Screening Process Lung Consortium (PROSPR-Lung). In our primary validity analyses, the reference standard LCS eligibility was based on self-reported smoking data collected via survey. Within one PROSPR-Lung health system, we used a training data set and penalized multivariable logistic regression using the Least Absolute Shrinkage and Selection Operator to select EHR-based variables into the prediction model including demographics, smoking history, diagnoses, and prescription medications. A separate test data set assessed model performance. We also conducted external validation analysis in a separate health system and reported AUC, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy metrics associated with the Youden Index. RESULTS There were 14,214 individuals with survey data to assess LCS eligibility in primary analyses. The overall performance for assigning LCS eligibility status as measured by the AUC values at the two health systems was 0.940 and 0.938. At the Youden Index cutoff value, performance metrics were as follows: accuracy, 0.855 and 0.895; sensitivity, 0.886 and 0.920; specificity, 0.896 and 0.850; PPV, 0.357 and 0.444; and NPV, 0.988 and 0.992. CONCLUSION Our results suggest that health systems can use an EHR-derived multivariable prediction model to aid in the identification of those who may be eligible for LCS.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3