Natural Language Processing to Automatically Extract the Presence and Severity of Esophagitis in Notes of Patients Undergoing Radiotherapy

Author:

Chen Shan12ORCID,Guevara Marco12,Ramirez Nicolas12,Murray Arpi2,Warner Jeremy L.34ORCID,Aerts Hugo J. W. L.125ORCID,Miller Timothy A.6,Savova Guergana K.6ORCID,Mak Raymond H.12ORCID,Bitterman Danielle S.12ORCID

Affiliation:

1. Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA

2. Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, MA

3. Population Sciences Program, Legorreta Cancer Center, Brown University, Providence, RI

4. Lifespan Cancer Institute, Providence, RI

5. Radiology and Nuclear Medicine, GROW & CARIM, Maastricht University, Maastricht, the Netherlands

6. Computational Health Informatics Program, Boston Children's Hospital, Boston, MA

Abstract

PURPOSE Radiotherapy (RT) toxicities can impair survival and quality of life, yet remain understudied. Real-world evidence holds potential to improve our understanding of toxicities, but toxicity information is often only in clinical notes. We developed natural language processing (NLP) models to identify the presence and severity of esophagitis from notes of patients treated with thoracic RT. METHODS Our corpus consisted of a gold-labeled data set of 1,524 clinical notes from 124 patients with lung cancer treated with RT, manually annotated for Common Terminology Criteria for Adverse Events (CTCAE) v5.0 esophagitis grade, and a silver-labeled data set of 2,420 notes from 1,832 patients from whom toxicity grades had been collected as structured data during clinical care. We fine-tuned statistical and pretrained Bidirectional Encoder Representations from Transformers–based models for three esophagitis classification tasks: task 1, no esophagitis versus grade 1-3; task 2, grade ≤1 versus >1; and task 3, no esophagitis versus grade 1 versus grade 2-3. Transferability was tested on 345 notes from patients with esophageal cancer undergoing RT. RESULTS Fine-tuning of PubMedBERT yielded the best performance. The best macro-F1 was 0.92, 0.82, and 0.74 for tasks 1, 2, and 3, respectively. Selecting the most informative note sections during fine-tuning improved macro-F1 by ≥2% for all tasks. Silver-labeled data improved the macro-F1 by ≥3% across all tasks. For the esophageal cancer notes, the best macro-F1 was 0.73, 0.74, and 0.65 for tasks 1, 2, and 3, respectively, without additional fine-tuning. CONCLUSION To our knowledge, this is the first effort to automatically extract esophagitis toxicity severity according to CTCAE guidelines from clinical notes. This provides proof of concept for NLP-based automated detailed toxicity monitoring in expanded domains.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3