Classification and Regression Trees to Predict for Survival for Patients With Hepatocellular Carcinoma Treated With Atezolizumab and Bevacizumab

Author:

Brown Timothy J.12ORCID,Gimotty Phyllis A.3,Mamtani Ronac2ORCID,Karasic Thomas B.2ORCID,Yang Yu-Xiao45ORCID

Affiliation:

1. Division of Hematology/Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX

2. Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA

3. Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA

4. Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA

5. Medicine Services, GI Section, Corporal Michael J Crescenz Veterans Affairs Medical Center, Philadelphia, PA

Abstract

PURPOSE Systemic therapy with atezolizumab and bevacizumab can extend life for patients with advanced hepatocellular carcinoma (HCC). However, there is substantial variability in response to therapy and overall survival. Although current prognostic models have been validated in HCC, they primarily consider covariates that may be reflective of the severity of the underlying liver disease of patients with HCC. We developed and internally validated a classification and regression tree (CART) to identify patient characteristics associated with risks of early mortality, at or before 6 months from treatment initiation. METHODS This retrospective cohort study used the nationwide Flatiron Health electronic health record–derived deidentified database and included patients with a diagnosis of HCC after January 1, 2020, who received initial systemic therapy with atezolizumab and bevacizumab. CART was developed from available baseline clinical and demographic information to predict mortality within 6 months from treatment initiation. Model characteristics were compared to the albumin-bilirubin (ALBI) model and was further validated against a contemporary validation cohort of patients after a data update. RESULTS A total of 293 patients were analyzed. The CART identified seven cohorts of patients from baseline demographic and laboratory characteristics. The model had an area under the receiver operating curve (AUROC) of 0.739 (95% CI, 0.683 to 0.794) for predicting 6-month mortality. This model was internally valid and performed more favorably than the ALBI model, which had an AUROC of 0.608 (95% CI, 0.557 to 0.660). The model applied to the contemporary validation cohort (n = 111) had an AUROC of 0.666 (95% CI, 0.506 to 0.826). CONCLUSION Using CART, we identified unique cohorts of patients with HCC treated with atezolizumab and bevacizumab with distinct risks of early mortality. This approach outperformed the ALBI model and used clinical and laboratory characteristics that are readily available to oncologists caring for these patients.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3