Cancer Radiomic and Perfusion Imaging Automated Framework: Validation on Musculoskeletal Tumors

Author:

Sierra Elvis Duran1,Valenzuela Raul1ORCID,Canjirathinkal Mathew A.1,Costelloe Colleen M.1,Moradi Heerod2,Madewell John E.1,Murphy William A.1,Amini Behrang1ORCID

Affiliation:

1. Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX

2. Department of Mechanical Engineering, Texas A&M University, College Station, TX

Abstract

PURPOSE Limitations from commercial software applications prevent the implementation of a robust and cost-efficient high-throughput cancer imaging radiomic feature extraction and perfusion analysis workflow. This study aimed to develop and validate a cancer research computational solution using open-source software for vendor- and sequence-neutral high-throughput image processing and feature extraction. METHODS The Cancer Radiomic and Perfusion Imaging (CARPI) automated framework is a Python-based software application that is vendor- and sequence-neutral. CARPI uses contour files generated using an application of the user's choice and performs automated radiomic feature extraction and perfusion analysis. This workflow solution was validated using two clinical data sets, one consisted of 40 pelvic chondrosarcomas and 42 sacral chordomas with a total of 82 patients, and a second data set consisted of 26 patients with undifferentiated pleomorphic sarcoma (UPS) imaged at multiple points during presurgical treatment. RESULTS Three hundred sixteen volumetric contour files were processed using CARPI. The application automatically extracted 107 radiomic features from multiple magnetic resonance imaging sequences and seven semiquantitative perfusion parameters from time-intensity curves. Statistically significant differences ( P < .00047) were found in 18 of 107 radiomic features in chordoma versus chondrosarcoma, including six first-order and 12 high-order features. In UPS postradiation, the apparent diffusion coefficient mean increased 41% in good responders ( P = .0017), while firstorder_10Percentile ( P = .0312) was statistically significant between good and partial/nonresponders. CONCLUSION The CARPI processing of two clinical validation data sets confirmed the software application's ability to differentiate between different types of tumors and help predict patient response to treatment on the basis of radiomic features. Benchmark comparison with five similar open-source solutions demonstrated the advantages of CARPI in the automated perfusion feature extraction, relational database generation, and graphic report export features, although lacking a user-friendly graphical user interface and predictive model building.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3