Extraction and Imputation of Eastern Cooperative Oncology Group Performance Status From Unstructured Oncology Notes Using Language Models

Author:

Xu Wenxin12ORCID,Gu Bowen1ORCID,Lotter William E.12,Kehl Kenneth L.12ORCID

Affiliation:

1. Dana-Farber Cancer Institute, Boston, MA

2. Harvard Medical School, Boston, MA

Abstract

PURPOSE Eastern Cooperative Oncology Group (ECOG) performance status (PS) is a key clinical variable for cancer treatment and research, but it is usually only recorded in unstructured form in the electronic health record. We investigated whether natural language processing (NLP) models can impute ECOG PS using unstructured note text. MATERIALS AND METHODS Medical oncology notes were identified from all patients with cancer at our center from 1997 to 2023 and divided at the patient level into training (approximately 80%), tuning/validation (approximately 10%), and test (approximately 10%) sets. Regular expressions were used to extract explicitly documented PS. Extracted PS labels were used to train NLP models to impute ECOG PS (0-1 v 2-4) from the remainder of the notes (with regular expression–extracted PS documentation removed). We assessed associations between imputed PS and overall survival (OS). RESULTS ECOG PS was extracted using regular expressions from 495,862 notes, corresponding to 79,698 patients. A Transformer-based Longformer model imputed PS with high discrimination (test set area under the receiver operating characteristic curve 0.95, area under the precision-recall curve 0.73). Imputed poor PS was associated with worse OS, including among notes with no explicit documentation of PS detected (OS hazard ratio, 11.9; 95% CI, 11.1 to 12.8). CONCLUSION NLP models can be used to impute performance status from unstructured oncologist notes at scale. This may aid the annotation of oncology data sets for clinical outcomes research and cancer care delivery.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3