Validation of an Updated Algorithm to Identify Patients With Incident Non–Small Cell Lung Cancer in Administrative Claims Databases

Author:

Patel Sandip Pravin1ORCID,Wang Rongrong2,Zhou Summera Qiheng3,Sheinson Daniel2,Johnson Ann2,Lee Janet Shin2ORCID

Affiliation:

1. University of California, San Diego, CA

2. Genentech Inc, South San Francisco, CA

3. Genesis Research, Hoboken, NJ

Abstract

PURPOSE Real-world lung cancer data in administrative claims databases often lack staging information and specific diagnostic codes for lung cancer histology subtypes. This study updates and validates Turner's 2017 treatment-based algorithm using more recent claims and electronic health record (EHR) data. METHODS This study used Optum's deidentified Market Clarity Data of linked medical and pharmacy claims with EHR data. Eligible patients had an incident lung cancer diagnosis (January 2014-December 2020) and ≥one valid histology code for lung cancer 30 days before to 60 days after diagnosis. Histology and stage information from the EHR were used to evaluate the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). We evaluated the Turner algorithm using cohort 1 patients diagnosed between June 2014 and October 2015 (step 1) and between November 2015 and December 2020 after approval of immunotherapies (step 2). Next, we evaluated cohort 2 patients diagnosed between November 2015 and December 2020 using an updated algorithm incorporating the latest US treatment guidelines (step 3), and compared the results for cohort 2 (Turner algorithm, step 2 patients). Furthermore, an algorithm to determine early NSCLC (eNSCLC; stage I-III) versus metastatic or advanced/metastatic non–small cell lung cancer (stage IV) was evaluated among patients with available histology and stage information. RESULTS A total of 5,012 patients were included (cohort 1, step 1: n = 406; cohort 1, step 2: n = 2,573; cohort 2, step 3: n = 2,744). The updated algorithm showed improved performance relative to the previous Turner algorithm for sensitivity (0.920-0.932), specificity (0.865-0.923), PPV (0.976-0.988), and NPV (0.640-0.673). The eNSCLC algorithm showed high specificity (0.874) and relatively low sensitivity (0.539). CONCLUSION An updated treatment-based algorithm identifying patients with incident NSCLC was validated using EHR data and distinguished lung cancer subtypes in claims databases when EHR data were not available.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3