Novel Functional Radiomics for Prediction of Cardiac Positron Emission Tomography Avidity in Lung Cancer Radiotherapy

Author:

Choi Wookjin1ORCID,Jia Yingcui1,Kwak Jennifer2ORCID,Werner-Wasik Maria1,Dicker Adam P.1ORCID,Simone Nicole L.1ORCID,Storozynsky Eugene3ORCID,Jain Varsha1,Vinogradskiy Yevgeniy1ORCID

Affiliation:

1. Department of Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA

2. Department of Radiology, University of Colorado School of Medicine, Aurora, CO

3. Department of Cardiology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA

Abstract

PURPOSE Traditional methods of evaluating cardiotoxicity focus on radiation doses to the heart. Functional imaging has the potential to provide improved prediction for cardiotoxicity for patients with lung cancer. Fluorine-18 (18F) fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) imaging is routinely obtained in a standard cancer staging workup. This work aimed to develop a radiomics model predicting clinical cardiac assessment using 18F-FDG PET/CT scans before thoracic radiation therapy. METHODS Pretreatment 18F-FDG PET/CT scans from three study populations (N = 100, N = 39, N = 70) were used, comprising two single-institutional protocols and one publicly available data set. A clinician (V.J.) classified the PET/CT scans per clinical cardiac guidelines as no uptake, diffuse uptake, or focal uptake. The heart was delineated, and 210 novel functional radiomics features were selected to classify cardiac FDG uptake patterns. Training data were divided into training (80%)/validation (20%) sets. Feature reduction was performed using the Wilcoxon test, hierarchical clustering, and recursive feature elimination. Ten-fold cross-validation was carried out for training, and the accuracy of the models to predict clinical cardiac assessment was reported. RESULTS From 202 of 209 scans, cardiac FDG uptake was scored as no uptake (39.6%), diffuse uptake (25.3%), and focal uptake (35.1%), respectively. Sixty-two independent radiomics features were reduced to nine clinically pertinent features. The best model showed 93% predictive accuracy in the training data set and 80% and 92% predictive accuracy in two external validation data sets. CONCLUSION This work used an extensive patient data set to develop a functional cardiac radiomic model from standard-of-care 18F-FDG PET/CT scans, showing good predictive accuracy. The radiomics model has the potential to provide an automated method to predict existing cardiac conditions and provide an early functional biomarker to identify patients at risk of developing cardiac complications after radiotherapy.

Publisher

American Society of Clinical Oncology (ASCO)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3