Training, Validation, and Test of Deep Learning Models for Classification of Receptor Expressions in Breast Cancers From Mammograms

Author:

Ueda Daiju1ORCID,Yamamoto Akira1ORCID,Takashima Tsutomu2ORCID,Onoda Naoyoshi2,Noda Satoru2,Kashiwagi Shinichiro2ORCID,Morisaki Tamami2,Honjo Takashi1,Shimazaki Akitoshi1,Miki Yukio1ORCID

Affiliation:

1. Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan

2. Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan

Abstract

PURPOSE The molecular subtype of breast cancer is an important component of establishing the appropriate treatment strategy. In clinical practice, molecular subtypes are determined by receptor expressions. In this study, we developed a model using deep learning to determine receptor expressions from mammograms. METHODS A developing data set and a test data set were generated from mammograms from the affected side of patients who were pathologically diagnosed with breast cancer from January 2006 through December 2016 and from January 2017 through December 2017, respectively. The developing data sets were used to train and validate the DL-based model with five-fold cross-validation for classifying expression of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2-neu (HER2). The area under the curves (AUCs) for each receptor were evaluated with the independent test data set. RESULTS The developing data set and the test data set included 1,448 images (997 ER-positive and 386 ER-negative, 641 PgR-positive and 695 PgR-negative, and 220 HER2-enriched and 1,109 non–HER2-enriched) and 225 images (176 ER-positive and 40 ER-negative, 101 PgR-positive and 117 PgR-negative, and 53 HER2-enriched and 165 non–HER2-enriched), respectively. The AUC of ER-positive or -negative in the test data set was 0.67 (0.58-0.76), the AUC of PgR-positive or -negative was 0.61 (0.53-0.68), and the AUC of HER2-enriched or non–HER2-enriched was 0.75 (0.68-0.82). CONCLUSION The DL-based model effectively classified the receptor expressions from the mammograms. Applying the DL-based model to predict breast cancer classification with a noninvasive approach would have additive value to patients.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3