Predictive Modeling for Adverse Events and Risk Stratification Programs for People Receiving Cancer Treatment

Author:

Osterman Chelsea K.1ORCID,Sanoff Hanna K.12ORCID,Wood William A.23ORCID,Fasold Megan2,Lafata Jennifer Elston24ORCID

Affiliation:

1. Division of Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC

2. Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC

3. Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, NC

4. Division of Pharmaceutical Outcomes and Policy, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC

Abstract

Emergency department visits and hospitalizations are common among people receiving cancer treatment, accounting for a large proportion of spending in oncology care and negatively affecting quality of life. As oncology care shifts toward value- and quality-based payment models, there is a need to develop interventions that can prevent these costly and low-value events among people receiving cancer treatment. Risk stratification programs have the potential to address this need and optimally would consist of three components: (1) a risk stratification algorithm that accurately identifies patients with modifiable risk(s), (2) intervention(s) that successfully reduce this risk, and (3) the ability to implement the risk algorithm and intervention(s) in an adaptable and sustainable way. Predictive modeling is a common method of risk stratification, and although a number of predictive models have been developed for use in oncology care, they have rarely been tested alongside corresponding interventions or developed with implementation in clinical practice as an explicit consideration. In this article, we review the available published predictive models for treatment-related toxicity or acute care events among people receiving cancer treatment and highlight challenges faced when attempting to use these models in practice. To move the field of risk-stratified oncology care forward, we argue that it is critical to evaluate predictive models alongside targeted interventions that address modifiable risks and to demonstrate that these two key components can be implemented within clinical practice to avoid unplanned acute care events among people receiving cancer treatment.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Oncology (nursing),Health Policy,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3