Circulating Cell-Free DNA Captures the Intratumor Heterogeneity in Multinodular Hepatocellular Carcinoma

Author:

Coto-Llerena Mairene12,Benjak Andrej3ORCID,Gallon John2ORCID,Meier Marie-Anne45,Boldanova Tuyana45,Terracciano Luigi M.67ORCID,Ng Charlotte K.Y.38ORCID,Piscuoglio Salvatore12ORCID

Affiliation:

1. Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland

2. Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland

3. Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland

4. Hepatology Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland

5. Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland

6. Department of Anatomic Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy

7. Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy

8. SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

Abstract

PURPOSE Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, with more than 40% of patients initially diagnosed with multinodular HCCs. Although circulating cell-free DNA (cfDNA) has been shown to effectively detect somatic mutations, little is known about its utility to capture intratumor heterogeneity in patients with multinodular HCC undergoing systemic treatment. MATERIALS AND METHODS Tumor biopsies and plasma were synchronously collected from seven prospectively recruited patients with HCC before and during systemic therapy. Plasma-derived cfDNA and matched germline were subjected to high-depth targeted sequencing with molecular barcoding. The mutational profile of the cfDNA was compared with whole-exome sequencing from matched tumor biopsies. RESULTS Genomic data revealed that out of the seven patients, five were considered intrahepatic metastasis and two multicentric HCCs. cfDNA captured the majority of mutations in the tumors and detected significantly more mutations than tumor biopsies. Driver mutations such as CTNNB1 S33C, NRAS Q61R, ARID1A R727fs, and NF1 E2368fs as well as standard-of-care biomarkers of response to targeted therapy were detected only in cfDNA. In the two patients with multicentric HCC, cfDNA detected mutations derived from the genetically independent and spatially distinct nodules. Moreover, cfDNA was not only able to capture clonal mutations but also the subclonal mutations detected in only one of the multiple biopsied nodules. Furthermore, serial cfDNA detected variants of tumor origin emerging during treatment. CONCLUSION This study revealed that the genetic analysis of cfDNA captures the intratumor heterogeneity in multinodular HCC highlighting the potential for cfDNA as a sensitive and noninvasive tool for precision medicine.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3