Exposure of Melanoma Cells to Dacarbazine Results in Enhanced Tumor Growth and Metastasis In Vivo

Author:

Lev Dina Chelouche1,Onn Amir1,Melinkova Vladislava O.1,Miller Claudia1,Stone Valerie1,Ruiz Maribelis1,McGary Eric C.1,Ananthaswamy Honnavara N.1,Price Janet E.1,Bar-Eli Menashe1

Affiliation:

1. From the Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX.

Abstract

Purpose In recent years, the incidence of cutaneous melanoma has increased more than that of any other cancer. Dacarbazine is considered the gold standard for treatment, having a response rate of 15% to 20%, but most responses are not sustained. Previously, we have shown that short exposure of primary cutaneous melanoma cells to dacarbazine resulted in the upregulation of interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF). The purpose of the present study was to determine how long-term exposure of melanoma cells to dacarbazine would affect their tumorigenic and metastatic potential in vivo. Materials and Methods The primary cutaneous melanoma cell lines SB2 and MeWo were repeatedly exposed in vitro to increasing concentrations of dacarbazine, and dacarbazine-resistant cell lines SB2-D and MeWo-D were selected and examined for their ability to grow and metastasize in nude mice. Results The dacarbazine-resistant cell lines SB2-D and MeWo-D exhibited increased tumor growth and metastatic behavior in vivo. This increase could be explained by the activation of RAF, MEK, and ERK, which led to the upregulation of IL-8 and VEGF. More IL-8, VEGF, matrix metalloproteinase-2 (MMP-2), and microvessel density (CD-31) were found in tumors produced by SB2-D and MeWo-D in vivo than in those produced by their parental counterparts. No mutations were observed in BRAF. Conclusion Our results have significant clinical implications. Treatment of melanoma patients with dacarbazine could select for a more aggressive melanoma phenotype. We propose that combination treatment with anti-VEGF/IL-8 or MEK inhibitors may potentiate the therapeutic effects of dacarbazine.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3