Decentralized Learning Framework of Meta-Survival Analysis for Developing Robust Prognostic Signatures

Author:

Cui Yi1,Li Bailiang1,Li Ruijiang1

Affiliation:

1. Yi Cui, Bailiang Li, and Ruijiang Li, Stanford University School of Medicine, Stanford, CA; Yi Cui, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.

Abstract

Purpose A significant hurdle in developing reliable gene expression–based prognostic models has been the limited sample size, which can cause overfitting and false discovery. Combining data from multiple studies can enhance statistical power and reduce spurious findings, but how to address the biologic heterogeneity across different datasets remains a major challenge. Better meta-survival analysis approaches are needed. Material and Methods We presented a decentralized learning framework for meta-survival analysis without the need for data aggregation. Our method consisted of a series of proposals that together alleviated the influence of data heterogeneity and improved the performance of survival prediction. First, we transformed the gene expression profile of every sample into normalized percentile ranks to obtain platform-agnostic features. Second, we used Stouffer’s meta-z approach in combination with Harrell’s concordance index to prioritize and select genes to be included in the model. Third, we used survival discordance as a scale-independent model loss function. Instead of generating a merged dataset and training the model therein, we avoided comparing patients across datasets and individually evaluated the loss function on each dataset. Finally, we optimized the model by minimizing the joint loss function. Results Through comprehensive evaluation on 31 public microarray datasets containing 6,724 samples of several cancer types, we demonstrated that the proposed method has outperformed (1) single prognostic genes identified using conventional meta-analysis, (2) multigene signatures trained on single datasets, (3) multigene signatures trained on merged datasets as well as by other existing meta-analysis methods, and (4) clinically applicable, established multigene signatures. Conclusion The decentralized learning approach can be used to effectively perform meta-analysis of gene expression data and to develop robust multigene prognostic signatures.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3