Two-Stage Approaches to Accounting for Patient Heterogeneity in Machine Learning Risk Prediction Models in Oncology

Author:

Oh Eun Jeong1ORCID,Parikh Ravi B.2,Chivers Corey3,Chen Jinbo1

Affiliation:

1. Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA

2. Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA

3. University of Pennsylvania Health System, Philadelphia, PA

Abstract

PURPOSE Machine learning models developed from electronic health records data have been increasingly used to predict risk of mortality for general oncology patients. But these models may have suboptimal performance because of patient heterogeneity. The objective of this work is to develop a new modeling approach to predicting short-term mortality that accounts for heterogeneity across multiple subgroups in the presence of a large number of electronic health record predictors. METHODS We proposed a two-stage approach to addressing heterogeneity among oncology patients of different cancer types for predicting their risk of mortality. Structured data were extracted from the University of Pennsylvania Health System for 20,723 patients of 11 cancer types, where 1,340 (6.5%) patients were deceased. We first modeled the overall risk for all patients without differentiating cancer types, as is done in the current practice. We then developed cancer type–specific models using the overall risk score as a predictor along with preselected type-specific predictors. The overall and type-specific models were compared with respect to discrimination using the area under the precision-recall curve (AUPRC) and calibration using the calibration slope. We also proposed metrics that characterize the degree of risk heterogeneity by comparing risk predictors in the overall and type-specific models. RESULTS The two-stage modeling resulted in improved calibration and discrimination across all 11 cancer types. The improvement in AUPRC was significant for hematologic malignancies including leukemia, lymphoma, and myeloma. For instance, the AUPRC increased from 0.358 to 0.519 (∆ = 0.161; 95% CI, 0.102 to 0.224) and from 0.299 to 0.354 (∆ = 0.055; 95% CI, 0.009 to 0.107) for leukemia and lymphoma, respectively. For all 11 cancer types, the two-stage approach generated well-calibrated risks. A high degree of heterogeneity between type-specific and overall risk predictors was observed for most cancer types. CONCLUSION Our two-stage modeling approach that accounts for cancer type–specific risk heterogeneity has improved calibration and discrimination than a model agnostic to cancer types.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3