Evaluating High-Dimensional Machine Learning Models to Predict Hospital Mortality Among Older Patients With Cancer

Author:

Qiao Edmund M.1ORCID,Qian Alexander S.1ORCID,Nalawade Vinit1ORCID,Voora Rohith S.1ORCID,Kotha Nikhil V.1ORCID,Vitzthum Lucas K.2ORCID,Murphy James D.1ORCID

Affiliation:

1. Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA

2. Department of Radiation Oncology, Stanford University, Stanford, CA

Abstract

PURPOSE Older hospitalized cancer patients face high risks of hospital mortality. Improved risk stratification could help identify high-risk patients who may benefit from future interventions, although we lack validated tools to predict in-hospital mortality for patients with cancer. We evaluated the ability of a high-dimensional machine learning prediction model to predict inpatient mortality and compared the performance of this model to existing prediction indices. METHODS We identified patients with cancer older than 75 years from the National Emergency Department Sample between 2016 and 2018. We constructed a high-dimensional predictive model called Cancer Frailty Assessment Tool (cFAST), which used an extreme gradient boosting algorithm to predict in-hospital mortality. cFAST model inputs included patient demographic, hospital variables, and diagnosis codes. Model performance was assessed with an area under the curve (AUC) from receiver operating characteristic curves, with an AUC of 1.0 indicating perfect prediction. We compared model performance to existing indices including the Modified 5-Item Frailty Index, Charlson comorbidity index, and Hospital Frailty Risk Score. RESULTS We identified 2,723,330 weighted emergency department visits among older patients with cancer, of whom 144,653 (5.3%) died in the hospital. Our cFAST model included 240 features and demonstrated an AUC of 0.92. Comparator models including the Modified 5-Item Frailty Index, Charlson comorbidity index, and Hospital Frailty Risk Score achieved AUCs of 0.58, 0.62, and 0.71, respectively. Predictive features of the cFAST model included acute conditions (respiratory failure and shock), chronic conditions (lipidemia and hypertension), patient demographics (age and sex), and cancer and treatment characteristics (metastasis and palliative care). CONCLUSION High-dimensional machine learning models enabled accurate prediction of in-hospital mortality among older patients with cancer, outperforming existing prediction indices. These models show promise in identifying patients at risk of severe adverse outcomes, although additional validation and research studying clinical implementation of these tools is needed.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3