Using Machine Learning and Natural Language Processing to Review and Classify the Medical Literature on Cancer Susceptibility Genes

Author:

Bao Yujia1,Deng Zhengyi2,Wang Yan2,Kim Heeyoon1,Armengol Victor Diego2,Acevedo Francisco2,Ouardaoui Nofal3,Wang Cathy34,Parmigiani Giovanni34,Barzilay Regina1,Braun Danielle34,Hughes Kevin S.25

Affiliation:

1. Massachusetts Institute of Technology, Boston, MA

2. Massachusetts General Hospital, Boston, MA

3. Harvard T.H. Chan School of Public Health, Boston, MA

4. Dana-Farber Cancer Institute, Boston, MA

5. Harvard Medical School, Boston, MA

Abstract

PURPOSE The medical literature relevant to germline genetics is growing exponentially. Clinicians need tools that help to monitor and prioritize the literature to understand the clinical implications of pathogenic genetic variants. We developed and evaluated two machine learning models to classify abstracts as relevant to the penetrance—risk of cancer for germline mutation carriers—or prevalence of germline genetic mutations. MATERIALS AND METHODS We conducted literature searches in PubMed and retrieved paper titles and abstracts to create an annotated data set for training and evaluating the two machine learning classification models. Our first model is a support vector machine (SVM) which learns a linear decision rule on the basis of the bag-of-ngrams representation of each title and abstract. Our second model is a convolutional neural network (CNN) which learns a complex nonlinear decision rule on the basis of the raw title and abstract. We evaluated the performance of the two models on the classification of papers as relevant to penetrance or prevalence. RESULTS For penetrance classification, we annotated 3,740 paper titles and abstracts and evaluated the two models using 10-fold cross-validation. The SVM model achieved 88.93% accuracy—percentage of papers that were correctly classified—whereas the CNN model achieved 88.53% accuracy. For prevalence classification, we annotated 3,753 paper titles and abstracts. The SVM model achieved 88.92% accuracy and the CNN model achieved 88.52% accuracy. CONCLUSION Our models achieve high accuracy in classifying abstracts as relevant to penetrance or prevalence. By facilitating literature review, this tool could help clinicians and researchers keep abreast of the burgeoning knowledge of gene–cancer associations and keep the knowledge bases for clinical decision support tools up to date.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3