Machine Learning and Mechanistic Modeling for Prediction of Metastatic Relapse in Early-Stage Breast Cancer

Author:

Nicolò Chiara12,Périer Cynthia12,Prague Melanie34,Bellera Carine45,MacGrogan Gaëtan67,Saut Olivier12,Benzekry Sébastien12

Affiliation:

1. Mathematical Modeling for Oncology Team, Inria Bordeaux Sud-Ouest, Talence, France

2. Institut de Mathématiques de Bordeaux, UMR 5251, CNRS, Bordeaux, France

3. Statistics in Systems Biology and Translational Medicine Team, Inria Bordeaux Sud-Ouest, University of Bordeaux, Bordeaux, France

4. INSERM U1219, Bordeaux Public Health, University of Bordeaux, Bordeaux, France

5. Department of Clinical Epidemiology and Clinical Research, Institut Bergonié, Regional Comprehensive Cancer Centre, Bordeaux, France

6. Department of Biopathology, Institut Bergonié, Regional Comprehensive Cancer Centre, Bordeaux, France

7. INSERM U1218, Bordeaux Public Health, University of Bordeaux, Bordeaux, France

Abstract

PURPOSE For patients with early-stage breast cancer, predicting the risk of metastatic relapse is of crucial importance. Existing predictive models rely on agnostic survival analysis statistical tools (eg, Cox regression). Here we define and evaluate the predictive ability of a mechanistic model for time to distant metastatic relapse. METHODS The data we used for our model consisted of 642 patients with 21 clinicopathologic variables. A mechanistic model was developed on the basis of two intrinsic mechanisms of metastatic progression: growth (parameter α) and dissemination (parameter μ). Population statistical distributions of the parameters were inferred using mixed-effects modeling. A random survival forest analysis was used to select a minimal set of five covariates with the best predictive power. These were further considered to individually predict the model parameters by using a backward selection approach. Predictive performances were compared with classic Cox regression and machine learning algorithms. RESULTS The mechanistic model was able to accurately fit the data. Covariate analysis revealed statistically significant association of Ki67 expression with α ( P = .001) and EGFR expression with μ ( P = .009). The model achieved a c-index of 0.65 (95% CI, 0.60 to 0.71) in cross-validation and had predictive performance similar to that of random survival forest (95% CI, 0.66 to 0.69) and Cox regression (95% CI, 0.62 to 0.67) as well as machine learning classification algorithms. CONCLUSION By providing informative estimates of the invisible metastatic burden at the time of diagnosis and forward simulations of metastatic growth, the proposed model could be used as a personalized prediction tool for routine management of patients with breast cancer.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3