Dynamic Risk Prediction of 30-Day Mortality in Patients With Advanced Lung Cancer: Comparing Five Machine Learning Approaches

Author:

Vesteghem Charles123ORCID,Szejniuk Weronika M.134ORCID,Brøndum Rasmus F.123ORCID,Falkmer Ursula G.134,Azencott Chloé-Agathe567,Bøgsted Martin123

Affiliation:

1. Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

2. Department of Haematology, Aalborg University Hospital, Aalborg, Denmark

3. Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark

4. Department of Oncology, Aalborg University Hospital, Aalborg, Denmark

5. CBIO Mines ParisTech, PSL Research University, Paris, France

6. Institut Curie, Paris, France

7. INSERM U900, Paris, France

Abstract

PURPOSE Administering systemic anticancer treatment (SACT) to patients near death can negatively affect their health-related quality of life. Late SACT administrations should be avoided in these cases. Machine learning techniques could be used to build decision support tools leveraging registry data for clinicians to limit late SACT administration. MATERIALS AND METHODS Patients with advanced lung cancer who were treated at the Department of Oncology, Aalborg University Hospital and died between 2010 and 2019 were included (N = 2,368). Diagnoses, treatments, biochemical data, and histopathologic results were used to train predictive models of 30-day mortality using logistic regression with elastic net penalty, random forest, gradient tree boosting, multilayer perceptron, and long short-term memory network. The importance of the variables and the clinical utility of the models were evaluated. RESULTS The random forest and gradient tree boosting models outperformed other models, whereas the artificial neural network–based models underperformed. Adding summary variables had a modest effect on performance with an increase in average precision from 0.500 to 0.505 and from 0.498 to 0.509 for the gradient tree boosting and random forest models, respectively. Biochemical results alone contained most of the information with a limited degradation of the performances when fitting models with only these variables. The utility analysis showed that by applying a simple threshold to the predicted risk of 30-day mortality, 40% of late SACT administrations could have been prevented at the cost of 2% of patients stopping their treatment 90 days before death. CONCLUSION This study demonstrates the potential of a decision support tool to limit late SACT administration in patients with cancer. Further work is warranted to refine the model, build an easy-to-use prototype, and conduct a prospective validation study.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3