Prediction of Adverse Pathology at Radical Prostatectomy in Grade Group 2 and 3 Prostate Biopsies Using Machine Learning

Author:

Paulson Nathan1ORCID,Zeevi Tal2ORCID,Papademetris Maria2,Leapman Michael S.2ORCID,Onofrey John A.2ORCID,Sprenkle Preston C.2ORCID,Humphrey Peter A.2,Staib Lawrence H.2ORCID,Levi Angelique W.2ORCID

Affiliation:

1. Stanford University, Stanford, CA

2. Yale School of Medicine, New Haven, CT

Abstract

PURPOSE There is ongoing clinical need to improve estimates of disease outcome in prostate cancer. Machine learning (ML) approaches to pathologic diagnosis and prognosis are a promising and increasingly used strategy. In this study, we use an ML algorithm for prediction of adverse outcomes at radical prostatectomy (RP) using whole-slide images (WSIs) of prostate biopsies with Grade Group (GG) 2 or 3 disease. METHODS We performed a retrospective review of prostate biopsies collected at our institution which had corresponding RP, GG 2 or 3 disease one or more cores, and no biopsies with higher than GG 3 disease. A hematoxylin and eosin–stained core needle biopsy from each site with GG 2 or 3 disease was scanned and used as the sole input for the algorithm. The ML pipeline had three phases: image preprocessing, feature extraction, and adverse outcome prediction. First, patches were extracted from each biopsy scan. Subsequently, the pre-trained Visual Geometry Group-16 convolutional neural network was used for feature extraction. A representative feature vector was then used as input to an Extreme Gradient Boosting classifier for predicting the binary adverse outcome. We subsequently assessed patient clinical risk using CAPRA score for comparison with the ML pipeline results. RESULTS The data set included 361 WSIs from 107 patients (56 with adverse pathology at RP). The area under the receiver operating characteristic curves for the ML classification were 0.72 (95% CI, 0.62 to 0.81), 0.65 (95% CI, 0.53 to 0.79) and 0.89 (95% CI, 0.79 to 1.00) for the entire cohort, and GG 2 and GG 3 patients, respectively, similar to the performance of the CAPRA clinical risk assessment. CONCLUSION We provide evidence for the potential of ML algorithms to use WSIs of needle core prostate biopsies to estimate clinically relevant prostate cancer outcomes.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3