Affiliation:
1. Department of Nuclear Science, Faculty of Science, University of Colombo, Colombo, Sri Lanka
2. Department of Radiography/Radiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
Abstract
PURPOSE Breast cancer is the most frequent cancer in women worldwide. However, its diagnosis mostly depends on visual examination of radiologic images, leading to an overdiagnosis with substantial costs. Therefore, a quantitative approach such as dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) through pharmacokinetic (PK) modeling is required for reliable analysis. As PK parameters lack information on parameter heterogeneity, texture-based analysis is required to quantify PK parameter heterogeneity. Therefore, this study focused on determining the usefulness of fractal dimension (FD) as a potential imaging biomarker of tumor heterogeneity for discriminating benign and malignant breast lesions. METHODS Parametric maps for PK parameters, extravasation rate of contrast agent from blood plasma to extravascular extracellular space (Ktrans) and volume fraction of extravascular extracellular space (ve), were generated for the regions of interest (ROIs) under the standard model using 18 lesions. Then, tumor ROI and pixel DCE-MRI time-course data were analyzed to extract pixel values of Ktrans and ve. For each ROI, FD values of Ktrans and ve were computed using the blanket method. RESULTS The FD values of Ktrans for benign and malignant lesions varied from 2.96 to 3.49 and from 2.37 to 3.16, respectively, whereas FD values of ve for benign and malignant lesions varied from 3.01 to 5.15 and 2.42 to 3.44, respectively. There were significant differences in FD values derived from Ktrans parametric maps ( P = .0053) and ve parametric maps ( P = .0271) between benign and malignant lesions according to the statistical analysis. CONCLUSION Incorporating texture heterogeneity changes in breast lesions captured by FD with quantitative DCE-MRI parameters generated under the standard model is a potential marker for prediction of malignant lesions.
Publisher
American Society of Clinical Oncology (ASCO)