Identifying Confounders Using Bayesian Networks and Estimating Treatment Effect in Prostate Cancer With Observational Data

Author:

Sieswerda Melle12ORCID,Xie Shixuan1,van Rossum Ruby1,Bermejo Inigo2,Geleijnse Gijs1ORCID,Aben Katja1ORCID,van Erning Felice1ORCID,Lemmens Valery2,Dekker André2ORCID,Verbeek Xander1

Affiliation:

1. Department of Research and Development, Netherlands Comprehensive Cancer Organization, Utrecht, the Netherlands

2. Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands

Abstract

PURPOSE Randomized controlled trials are considered the golden standard for estimating treatment effect but are costly to perform and not always possible. Observational data, although readily available, is sensitive to biases such as confounding by indication. Structure learning algorithms for Bayesian Networks (BNs) can be used to discover the underlying model from data. This enables identification of confounders through graph analysis, although the model might contain noncausal edges. We propose using a blacklist to aid structure learning in finding causal relationships. This is illustrated by an analysis into the effect of active treatment ( v observation) in localized prostate cancer. METHODS In total, 4,121 prostate cancer records were obtained from the Netherlands Cancer Registry. Subsequently, we developed a (causal) BN using structure learning while precluding noncausal relations. Additionally, we created several Cox proportional hazards models, each correcting for a different set of potential confounders (including propensity scores). Model predictions for overall survival were compared with expected survival on the basis of the general population using data from Statistics Netherlands (Centraal Bureau voor de Statistiek). RESULTS Structure learning precluding noncausal relations resulted in a causal graph but did not identify significant edges toward treatment; they were added manually. Graph analysis identified year of diagnosis and age as confounders. The BN predicted a treatment effect of 1 percentage point at 10 years. Chi-squared analysis found significant associations between year of diagnosis, age, stage, and treatment. Propensity score correction was successful. Adjusted Cox models predicted significant treatment effect around 3 percentage points at 10 years. CONCLUSION A blacklist in conjunction with structure learning can result in a causal BN that can be used for confounder identification. Treatment effect found here is close to the 5 percentage point found in the literature.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3